Organometallics 1999, 18, 3261-3263
3261
C8 a n d C12 sp Ca r bon Ch a in s Th a t Sp a n Tw o P la tin u m
Atom s: Th e F ir st Str u ctu r a lly Ch a r a cter ized
1,3,5,7,9,11-Hexa yn e
Thomas B. Peters,† J ames C. Bohling,† Atta M. Arif,† and J . A. Gladysz*,†,‡,§
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, and Institut fu¨r
Organische Chemie, Friedrich-Alexander Universita¨t Erlangen-Nu¨rnberg, Henkestrasse 42,
91054 Erlangen, Germany
Received J une 10, 1999
Summary: Reaction sequences involving trans-(p-tol)-
(Ar3P)2PtCl (Ar ) Ph, p-tol), HCtCCtCH, HCtCSiEt3,
and oxidative tCH/ HCt cross- or homocoupling (O2,
cat. CuCl/ TMEDA) give the Cx complexes trans,trans-
(p-tol)(Ar3P)2Pt(CtC)nPt(PAr3)2(p-tol) (n ) 4, 6), which
have been characterized by crystallography and by IR,
NMR, and UV-visible spectroscopy.
many challenges. For example, the possibility that
carbyne might easily bend and generate other allotropes
has received considerable speculation,6 but experimental
probes remain scant.
Several metal-capped octatetraynediyl systems LnMCt
CCtCCtCCtCMLn are now known.3 However, higher
C10-C20 homologues have so far only been accessed with
the chiral rhenium end group (η5-C5Me5)Re(NO)(PPh3).2e
These dirhenium compounds have yielded much valu-
able data. Nonetheless, the meso and dl diastereomers
are often inseparable, complicating some analyses.
Hence, we sought to develop parallel chemistry with
achiral end groups. In this communication, we report
that bis(phosphine)arylplatinum termini can also sup-
port C8-C12 chains, as well as crystal structures of C8
and C12 systems. The latter represents the longest
polyyne structurally characterized to date.7
Over the past few years, there has been rapidly
increasing interest in compounds where sp carbon
chains span two metal atoms,1-3 as well as sp carbon
rich organic systems.4,5 One important objective involves
methodology for the construction of longer sp carbon
chains. Such species constitute models for the polymeric
sp carbon allotrope “carbyne”,6 the precise physical and
chemical characterization of which continues to present
* Address correspondence to this author at the new Erlangen
permanent address.
We first prepared the building block (p-tol)(COD)PtCl
(1),8 which features (1) easily displaced diene and
chloride ligands and (2) a p-tol group to facilitate NMR
analyses. Reaction of 1 and p-tol3P (2.4 equiv) gave the
new bis(phosphine) complex trans-(p-tol)(p-tol3P)2PtCl
(2) in 94% yield after workup.9 As with all other
complexes below, 2 showed a single set of phosphine
NMR signals and virtual coupling patterns10 typical of
square-planar trans-bis(phosphine) complexes. As de-
picted in Scheme 1, a HNEt2 solution of 2 and CuI (0.12
equiv) was treated with excess HCtCCtCH11a in THF.
Workup gave the 1,3-butadiynyl complex trans-(p-tol)-
(p-tol3P)2PtCtCCtCH (3) as a tan powder in 79%
† University of Utah.
‡ Friedrich-Alexander Universita¨t Erlangen-Nu¨rnberg.
§ This paper is dedicated to a pioneer in this field and a neighbor in
Franconia, Prof. Dr. Helmut Werner, on the occasion of his 65th
birthday.
(1) (a) Bruce, M. I. Coord. Chem. Rev. 1997, 166, 91. (b) Paul, F.;
Lapinte, C. Coord. Chem. Rev. 1998, 178-180, 427. (c) Apropos the
dedication, see: Gevert, O.; Wolf, J .; Werner, H. Organometallics 1996,
15, 2806. Werner, H. J . Chem. Soc., Chem. Commun. 1997, 903
(review).
(2) Full papers from our laboratory: (a) Weng, W.; Bartik, T.; Brady,
M.; Bartik, B.; Ramsden, J . A.; Arif, A. M.; Gladysz, J . A. J . Am. Chem.
Soc. 1995, 117, 11922. (b) Brady, M.; Weng, W.; Zhou, Y.; Seyler, J .
W.; Amoroso, A. J .; Arif, A. M.; Bo¨hme, M.; Frenking, G.; Gladysz, J .
A. J . Am. Chem. Soc. 1997, 119, 775. (c) Falloon, S. B.; Szafert, S.;
Arif, A. M.; Gladysz, J . A. Chem. Eur. J . 1998, 4, 1033. (d) Bartik, T.;
Weng, W.; Ramsden, J . A.; Szafert, S.; Falloon, S. B.; Arif, A. M.;
Gladysz, J . A. J . Am. Chem. Soc. 1998, 120, 11071. (e) Dembinski, R.;
Bartik, T.; Bartik, B.; J aeger, M.; Gladysz, J . A. Submitted for
publication (communication: Bartik, T.; Bartik, B.; Brady, M.; Dem-
binski, R.; Gladysz, J . A. Angew. Chem. 1996, 108, 467; Angew. Chem.,
Int. Ed. 1996, 35, 414).
yield.9,12 The 13C NMR coupling constant patterns (J CP
CPt, J CH) allowed unambiguous assignment of the sp
carbon signals.
,
J
(3) (a) Coat, F.; Lapinte, C. Organometallics 1996, 15, 477. (b) Akita,
M.; Chung, M.-C.; Sakurai, A.; Sugimoto, S.; Terada, M.; Tanaka, M.;
Moro-oka, Y. Organometallics 1997, 16, 4882. (c) Bruce, M. I.; Ke, M.;
Low, P. J .; Skelton, B. W.; White, A. H. Organometallics 1998, 17, 3539.
(4) (a) Faust, R. Angew. Chem. 1998, 110, 2988; Angew. Chem., Int.
Ed. 1998, 37, 2825. (b) Bunz, U. H. F.; Rubin, Y.; Tobe, Y. Chem. Soc.
Rev. 1999, 28, 107. (c) Carbon Rich Compounds II: Macrocyclic
Oligoacetylenes and Other Linearly Conjugated Systems; de Meijre, A.,
Ed.; Topics in Current Chemistry 201; Springer-Verlag: Berlin, 1999.
(5) For C16-C32 polyalkynediyl systems with tert-butyl, silyl, or
cyano end groups, see the following lead papers and references
therein: (a) Eastmond, R.; J ohnson, T. R.; Walton, D. R. M. Tetrahe-
dron 1972, 28, 4601. (b) J ohnson, T. R.; Walton, D. R. M. Tetrahedron
1972, 28, 5221. (c) Schermann, G.; Gro¨sser, T.; Hampel, F.; Hirsch, A.
Chem. Eur. J . 1997, 3, 1105.
(6) (a) Hunter, J . M.; Fye, J . L.; Roskamp, E. J .; J arrold, M. F. J .
Phys. Chem. 1994, 98, 1810. (b) Lagow, R. J .; Kampa, J . J .; Wei, H.-
C.; Battle, S. L.; Genge, J . W.; Laude, D. A.; Harper, C. J .; Bau, R.;
Stevens, R. C.; Haw, J . F.; Munson, E. Science 1995, 267, 362. (c)
Homman, K.-H. Angew. Chem. 1998, 110, 2572; Angew. Chem., Int.
Ed. 1998, 37, 2435.
(7) All crystallographically characterized 1,3,5,7-tetraynes (seven)
and 1,3,5,7,9-pentaynes (one) are tabulated in the following papers:
(a) Bartik, B.; Dembinski, R.; Bartik, T.; Arif, A. M.; Gladysz, J . A.
New J . Chem. 1997, 21, 739. (b) Dembinski, R.; Lis, T.; Szafert, S.;
Mayne, C. L.; Bartik, T.; Gladysz, J . A. J . Organomet. Chem. 1999,
578, 229.
(8) (a) The reaction of (COD)PtCl28b and p-tolMgBr (2.5 equiv) gave
(COD)Pt(p-tol)2.8c Subsequent addition of acetyl chloride (1.0 equiv)
in MeOH/CH2Cl2 yielded 1.8d (b) Clark, H. C.; Manzer, L. E. J .
Organomet. Chem. 1973, 59, 411. (c) Alternative synthesis: Eaborn,
C.; Odell, K. J .; Pidcock, A. J . Chem. Soc., Dalton Trans. 1978, 357.
(d) Alternative synthesis: Ertl, J .; Grafl, D.; Brune. H. A. Z. Natur-
forsch. 1982, 37B, 1082.
(9) All new complexes were characterized by IR and NMR spectros-
copy (and many by additional means), as detailed in the Supporting
Information. Most gave correct microanalyses.
(10) Pregosin, P. S.; Venanzi, L. M. Chem. Br. 1978, 276.
(11) (a) Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes,
Allenes and Cumulenes; Elsevier: New York, 1981; p 146. (b) Ibid., p
136.
10.1021/om990448c CCC: $18.00 © 1999 American Chemical Society
Publication on Web 07/30/1999