phine and water, protection with benzyl chloroformate, and
allylation with allyl bromide gave the diene 12. The olefin
metathesis reaction with 10 mol % of the Grubbs ruthenium
alkylidene catalyst18 provided the desired seven-membered
nitrogen heterocycle 13 in a respectable yield (77%). The
experimental conditions for the olefin metathesis reaction
are worthy of comment. Optimal results were obtained when
5 mol % of the catalyst was used followed by the addition
of another 5 mol % after 4 h. The reaction would not proceed
to completion with a single loading of the catalyst, even up
to 20 mol %. Presumably, the catalyst decomposed and an
additional loading was required to obtain complete conver-
sion.
Diimide reduction of the olefin was accomplished with
potassium azodicarboxylate in acetic acid to afford the
saturated nitrogen heterocycle 14 in a moderate yield.
Hydrolysis of the oxazoline was carried out with 1 N HCl
in ethanol at 60 °C. The formation of 2 required subsequent
treatment with base. Under simple aqueous workup condi-
tions, the benzoate derivative was isolated as the amine
hydrochloride salt. Stirring with triethylamine in methanol
for 36 h was necessary to effect the benzoyl transfer to the
amine. A higher overall yield from 13 to 2 was realized by
reversing the hydrolysis and reduction steps. Acidic hydroly-
sis and base treatment afforded 15 in 72% yield, and
hydrogenation with Wilkinson’s catalyst gave 2 with no
observed cleavage of the protecting groups.
We have described an asymmetric synthesis of the balanol
heterocycle from D-serine which incorporated a palladium-
mediated equilibration to set the relative stereochemistry.
Seven-membered ring formation was accomplished with a
ruthenium-catalyzed olefin metathesis reaction in high yield.
The utility of intermediate 13 for the synthesis of balanol
analogues19 and novel azasugar derivatives is currently under
investigation and will be reported in due course.
Acknowledgment. We thank NSF (OSR-9452892, CHE-
9875013), NIH (GM58470-01), and North Dakota State
University for support of our programs. We are grateful to
Boulder Scientific, Inc. for a generous gift of Grubbs’
catalyst. We thank Dr. Peter Wuts for helpful discussions.
Supporting Information Available: Experimental pro-
cedures and characterization data for compounds 2 and 9-15
and unnumbered intermediates isolated. This material is
OL990705+
(19) For studies on analogues of balanol, see: (a) Heerding, J. M.; Lampe,
J. W.; Darges, J. W.; Stamper, M. L. Biorg. Med. Chem. Lett. 1995, 5,
1839. (b) Jagdmann, G. E., Jr.; Defauw, J. M.; Lai, Y.-S.; Crane, H. M.;
Hall, S. E.; Buben, J. A.; Hu, H.; Gosnell, P. A. Biorg. Med. Chem. Lett.
1995, 5, 2015. (c) Lai, Y.-S.; Menaldino, D. S.; Nichols, J. B.; Jagdmann,
G. E., Jr.; Mylott, F.; Gillespie, J.; Hall, S. E. Biorg. Med. Chem. Lett.
1995, 5, 2151. (d) Lai, Y.-S.; Mendoza, J. S.; Hubbard, F.; Kalter, K. Biorg.
Med. Chem. Lett. 1995, 5, 2155. (e) Mendoza, J. S.; Jagdmann, G. E., Jr.;
Gosnell, P. A. Biorg. Med. Chem. Lett. 1995, 5, 2211. (f) Hu, H.;
Hollinshead, S. P.; Hall, S. E.; Kalter, K.; Ballas, L. M. Biorg. Med. Chem.
Lett. 1996, 6, 973. (g) Jagdmann, G. E., Jr.; Defauw, J. M.; Lampe, J. W.
Biorg. Med. Chem. Lett. 1996, 6, 1759. (h) Defauw, J. M.; Murphy, M.
M.; Jagdmann, G. E., Jr.; Hu, H.; Lampe, J. W.; Hollinshead, S. P.; Mitchell,
T. J.; Crane, H. M.; Heerding, J. M.; Mendoza, J. S.; Davis, J. E.; Dargess,
J. W.; Hubbard, F. R.; Hall, S. E. J. Med. Chem. 1996, 39, 5215. (i) Nielsen,
J.; Lyngsø, L. O. Tetrahedron Lett. 1996, 37, 8439. (j) Lai, Y.-S.; Mendoza,
J. S.; Jagdmann, G. E., Jr.; Menaldino, D. S.; Biggers, C. K.; Heerding, J.
M.; Wilson, J. W.; Hall, S. E.; Jiang, J. B.; Janzen, W. P.; Ballas, L. W. J.
Med. Chem. 1997, 40, 226.
(13) The alcohol 8 is a known compound. See ref 12a and references
therein.
(14) All compounds displayed satisfactory spectroscopic (NMR, IR) data
consistent with their structures.
1
(15) Diastereomer ratios were determined by H NMR (400 MHz).
(16) Careful chelation controlled addition of vinyllithium reagents to
aminoaldehydes generated in situ from DIBAL/TRIBAL in non-ether
solvents have been reported to proceed with high (>20:1) selectivity. (a)
Sames, D.; Polt, R. J. Org. Chem. 1994, 59, 4596. See also: (b) Angle, S.
R.; Henry, R. H. J. Org. Chem. 1997, 62, 8549. (c) Ibuka, T.; Habashita,
H.; Otaka, A.; Fujii, N.; Oguchi, Y.; Uyehara, T.; Yamamoto, Y. J. Org.
Chem. 1991, 56, 4370.
(17) Lal, B.; Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron
Lett. 1977, 1977.
(18) For recent reviews on ring-closing metathesis, see: (a) Schuster,
M.; Blechert, S. Angew. Chem. 1997, 109, 2144; Angew. Chem., Int. Ed.
Engl. 1997, 36, 2036. (b) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54,
4413. (c) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371.
Org. Lett., Vol. 1, No. 4, 1999
617