J. Am. Chem. Soc. 1999, 121, 7509-7516
7509
Investigations of a Nucleophilic Alaninol Synthon Derived from
Serine
Mukund P. Sibi,* Drew Rutherford,1 Paul A. Renhowe,2 and Biqin Li
Contribution from the Department of Chemistry, North Dakota State UniVersity,
Fargo, North Dakota 58105-5516
ReceiVed February 26, 1999
Abstract: A nucleophilic synthon, (S)-(+)-4-(2-oxazolidonyl)-methyltriphenylphosphinyl iodide 6, available
from L-serine in five steps (overall yield of 52%), reacts with aldehydes to produce alkenes in good to excellent
yields (74-89%) and, in some cases, provides excellent stereocontrol of the new double bond. The geometry
of the newly formed double bond is influenced by the nature of the aldehyde and reaction conditions. The
trends in olefin configuration are discussed. Application of this methodology allows for easy preparation of
molecules containing double bonds allylic to nitrogen, including oxazolidinones and â,γ-unsaturated amino
alcohols. Several of the unsaturated oxazolidinones are converted to â,γ-unsaturated amino alcohols in high
yields (75 to 90%).
Naturally occurring difunctional amino acids with their rich
array of functional groups and inherent chirality are ideal
building blocks for the preparation of useful chiral synthons.
Serine, an amino acid readily available in both enantiomeric
forms, has served as one such starting material. Differentially
protected serine and derivatives derived from the parent amino
acid are useful synthons in the preparation of natural and
unnatural amino acids and amino alcohols. The chemistry of
nucleophilic, electrophilic, and radical alanine or alaninol
equivalents derived from serine has been explored in several
laboratories,3 most notably by Baldwin,4 Garner,5 Jackson,6
Sasaki,7 Vederas8 and Viallefont.9 Work in our laboratory has
also focused on synthons derived from serine.10 The chemistry
of a nucleophilic alaninol synthon is the subject of this paper.11
A major emphasis of the utility of nucleophilic alanine
(alaninol) synthons has been in the development of new
methodologies for the syntheses of nonproteinogenic amino
acids. These amino acids are significant because of their wide
range of biological activities.12 In particular, â,γ-unsaturated
amino acids have attracted considerable interest because of their
(1) Taken in part from the M. S. thesis of Drew Rutherford (North Dakota
State University, 1994) and M. S. thesis of Biqin Li (North Dakota State
University, 1992).
(2) Undergraduate research participant 1988-1990, NSF-REU participant
(6) Selected examples of reactions of zinc reagents see: (a) Jackson,
R. F. W.; James, K.; Wythes, M. J.; Wood., A. J. Chem. Soc., Chem.
Commun. 1989, 644. (b) Jackson, R. F. W.; Wishart, N.; Wood, A.; James,
K.; Wythes, M. J. J. Org. Chem. 1992, 57, 3397. (c) Jackson, R. F. W.;
Turner, D.; Block, M. H. Synlett 1996, 862. (d) Jung, M. E.; Starkey, L. S.
Tetrahedron 1997, 53, 8815.
(7) Sulfones: (a) Sasaki, N. A.; Hashimoto, C.; Potier, P. Tetrahedron
Lett. 1987, 28, 6069. (b) Sasaki, N. A.; Hashimoto, C.; Pauly, R.
Tetrahedron Lett. 1989, 30, 1943.
(8) Electrophilic alaninol synthons. â-lactones: (a) Arnold, L. D.; May,
R. G.; Vederas, J. C. J. Am. Chem. Soc. 1988, 110, 2237 and references
therein. (b) Arnold, L. D.; Drover, J. C. G.; Vederas, J. C. J. Am. Chem.
Soc. 1987, 109, 4649.
(9) Electrophilic synthons: (a) Bajgrowicz, J. A.; El Hallaoui, A.;
Jacquier, R.; Pigiere, Ch.; Viallefont, Ph. Tetrahedron 1985, 41, 1833. (b)
El Marini, A.; Roumestant, M. L.; Viallefont, P.; Razafindrambou, D.;
Bonato, M.; Follet, M. Synthesis 1992, 1104. (c) Atmani, A.; El Hallaoui,
A.; El Hajji, S.; Roumestant, M. L.; Viallefont, P. Synth. Commun. 1991,
21, 2383.
1988.
(3) General: Williams, R. M. Synthesis of Optically ActiVe R-Amino
Acids; Pergamon: New York, 1989; Chapter 2 and references therein.
Duthaler, R. O. Tetrahedron 1994, 50, 1539. Nucleophilic synthons: (a)
Seebach, D.; Wasmuth, D. Angew. Chem., Int. Ed. Engl. 1981, 20, 971. (b)
Wolf, J.-P.; Rapoport, H. J. Org. Chem. 1989, 54, 3164. (c) Daddu, R.;
Eckhardt, M.; Furlong, M.; Knoess, H. P.; Berger, S.; Knochel, P.
Tetrahedron 1994, 50, 2415. (d) Ye, B.; Otaka, A.; Burke, T. R., Jr. Synlett
1996, 459. (e) Malan, C.; Morin, C. Synlett 1996, 167. (f) Duthaler, R. O.
Angew. Chem., Int. Ed. Engl. 1991, 30, 705. (g) Blanchard, P.; El Kortbi,
M. S.; Fourrey, J.-L.; Robert-Gero, M. Tetrahedron Lett. 1992, 33, 3319.
Electrophilic synthons: (h) Dureault, A.; Tranchepain I.; Depezay, J.-C. J.
Org. Chem. 1989, 54, 5324. (i) Sato, K.; Kozikowski, A. P. Tetrahedron
Lett. 1989, 30, 4073. Radical alaninol synthons: (j) Maria, E. J.; Da Silva,
A. D.; Fourrey, J.-L.; Machado, A.; Robert-Gero, M. Tetrahedron Lett. 1994,
35, 3301.
(4) Nucleophilic synthons: (a) Baldwin, J. E.; Moloney, M. G.; North,
M J. Chem. Soc., Perkin Trans. 1 1989, 833. Aspartate Derivatives: (b)
Baldwin, J. E.; Moloney, M. G.; North, M. Tetrahedron 1989, 45, 6309.
Electrophilic alanine/alaninol synthons. Aziridines: (c) Baldwin, J. E.;
Adlington, R. M.; Robinson, N. G. J. Chem. Soc., Chem. Commun. 1987,
153. Sulfamidates: (d) Baldwin, J. E.; Spivey, A. C.; Schofield, C. J.
Tetrahedron: Asymmetry 1990, 1, 881. Radical alanine synthon: (e)
Baldwin, J. E.; Adlington, R. M.; Birch, D. J.; Crawford, J. A.; Sweeney,
J. B. J. Chem. Soc., Chem. Commun. 1986, 1339.
(10) Nucleophilic synthons: (a) Sibi, M. P.; Christensen, J. W.; Li, B.;
Renhowe, P. A. J. Org. Chem. 1992, 57, 4329. (b) Sibi, M. P.; Li, B.
Tetrahedron Lett. 1992, 33, 4115. Electrophilic synthon: (c) Sibi, M. P.;
Rutherford, D.; Sharma, R. J. Chem. Soc., Perkin Trans. 1 1994, 1675.
Radical synthon: (d) Sibi, M. P.; Ji, J. J. Am. Chem. Soc. 1996, 118, 3063.
(11) For a preliminary account of this work see: Sibi, M. P.; Renhowe,
P. A. Tetrahedron Lett. 1990, 31, 7407.
(5) (a) Garner, P.; Park, J. M. J. Org. Chem. 1990, 55, 3772 and
references therein. For slight variants see: (b) Beaulieu, P. L.; Schiller, P.
W. Tetrahedron Lett. 1988, 29, 2019. (c) Blaskovich, M. A.; Lajoie, G. A.
J. Am. Chem. Soc. 1993, 115, 5021.
(12) (a) Barrett, G. C., Ed. Chemistry and Biochemistry of the Amino
Acids; Chapman and Hall: London, U.K., 1985. (b) Wagner, I.; Musso, H.
Angew. Chem., Int. Ed. Engl. 1983, 22, 816. (c) Williams, R. M.; Sinclair,
P. J.; Zhai, D.; Chen, J. J. Am. Chem. Soc. 1988, 110, 1547.
10.1021/ja9906249 CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/11/1999