10.1002/anie.202106412
Angewandte Chemie International Edition
RESEARCH ARTICLE
C.-M. Ho, M.-K. Wong, C.-M. Che, J. Am. Chem. Soc. 2006, 128, 14796
– 14797; s) W.-J. Yoo, C.-J. Li, J. Am. Chem. Soc. 2006, 128, 13064 –
13065; t) X. Li, S. J. Danishefsky, J. Am. Chem. Soc. 2008, 130, 5446 –
5448; u) T. Krause, S. Baader, B. Erb, L. J. Gooßen, Nat. Commun. 2016,
7, 11732; v) H. Lundberg, F. Tinnis, J. Zhang, A. G. Algarra, F. Himo, H.
Adolfsson, J. Am. Chem. Soc. 2017, 139, 2286 – 2295; x) Z. Liu, J. Zhang,
S. Chen, E. Shi, Y. Xu, X. Wan, Angew. Chem. 2012, 124, 3285 – 3289;
Angew. Chem. Int. Ed. 2012, 51, 3231 – 3235; y) N. Caldwell, C.
Jamieson, I. Simpson, A. J. B. Watson, Chem. Commun. 2015, 51, 9495
– 9498; z) C. G. McPherson, N. Caldwell, C. Jamieson, I. Simpson, A. J.
B. Watson, Org. Biomol. Chem. 2017, 15, 3507 – 3518; Also see reviews
in reference [1].
Conclusion
In conclusion, the direct amidation of esters can be readily
achieved by ball-milling without the requirement for bulk reaction
solvent. This reaction process is applicable to a very broad scope
of aryl and alkyl ester substrates, along with an array of secondary
and primary amines. Furthermore, this concept was showcased
in the matrix synthesis of a library of heteroaromatic amide
derivatives, the application to ammonium salts and in the
synthesis of a number of biologically relevant compounds
including active pharmaceuticals and agrochemicals. Moreover,
the mechanochemical amidation protocol was scaled up to
produce almost 2.5 g of the antidepressant moclobemide, and up
to 3.2 g of the model amide structure 3a. This sustainable, mild,
atom-economical, and efficient amidation protocol will not only
spark interest but have direct implications in the application of ball
milling and other mechanochemical synthesis techniques in an
industrial setting.
[6]
For some examples of the direct amidation of esters see: a) A. Basha, M.
Lipton, S. M. Weinreb, Tetrahedron Lett. 1977, 18, 4171 – 4172; b) T.
Gustafsson, F. Pontén, P. H. Seeberger, Chem. Commun. 2008, 44,
1100 – 1102; c) C. Ferroud, M. Godart, S. Ung, H. Borderies, A. Guy,
Tetrahedron Lett. 2008, 49, 3004 – 3008; d) B. R. Kim, H.-G. Lee, S.-B.
Kang, G. H. Sung, J.-J. Kim, J. K. Park, S.-G. Lee, Y.-J. Yoon, Synthesis
2012, 1, 42 – 50; e) J. L. Vrijdag, F. Delgado, N. Alonso, W. M. De
Borggraeve, N. Pérez-Macias, J. Alcázar, Chem. Commun. 2014, 50,
15094 – 15097; f) T. Ooi, E. Tayama, M. Yamada, K. Maruoka, Synlett,
1999, 6, 729-730; f) T. Ohshima, Y. Hayashi, K. Agura, Y. Fujii, A.
Yoshiyama, K. Mashima, Chem. Commun. 2012, 48, 5434 – 5436; g) H.
Morimoto, R. Fujiwara, Y. Shimizu, K. Morisaki, T. Ohshima, Org. Lett.
2014, 16, 2018 – 2021; h) A. Ali, S. M. A. H. Siddiki, K. Kon, K.-I. Shimizu,
ChemCatChem 2015, 7, 2705 – 2710; i) C. W. Cheung, M. L. Ploeger,
X. Hu, Nat. Commun. 2017, 8, 14878; j) B. D. Mkhonazi, M. Shandu, R.
Tshinavhe, S. B. Simelane, P. T. Moshapo, Molecules, 2020, 25, 1040;
k) N. Rashed, K. Masuda, T. Ichitsuka, N. Koumura, K. Sato, S.
Kobayashi, Adv. Synth. Catal. 2021, DOI:10.1002/adsc.202001496; l) Z.
Fu, X. Wang, S. Tao, Q. Bu, D. Wei, N. Liu, J. Org. Chem. 2021, 86, 2339
– 2358; m) T. B. Halima, J. Masson-Makdissi, S. G. Newman, Angew.
Chem. 2018, 130, 13107 – 13111; Angew. Chem. Int. Ed. 2018, 57
12925 – 12929; n) Y.-L. Zheng, S. G. Newman ACS Catal. 2019, 9, 5,
4426 – 4433; o) S. Shi, M. Szostak, Chem. Commun. 2017, 53, 10584;
p) T. Zhou, G. Li, S. P. Nolan, M. Szostak, Org. Lett. 2019, 21, 3304; q)
S. Shi, S. P. Nolan, M. Szostak, Acc. Chem. Res. 2018, 51, 2589. r) G.
Li, C.-L. Ji, X. Hong, M. Szostak, J. Am. Chem. Soc. 2019, 141, 11161 –
11172; s) G. Li, M. Szostak, Nat. Commun. 2018, 9, 4165; t) M. Rahman,
G. Li, M. Szostak, J. Org. Chem. 2019, 84, 12091 – 12100. For overviews
of related transamidations see: u) G. Li, S. Ma. M. Szostak, Trends Chem.
2020, 2, 914; v) G. Li, M. Szostak, Synthesis, 2020, 52, 2579-2599.
For some recent examples of synthetic reactions by mechanochemistry,
see: a) K. Kubota, Y. Pang, A. Miura, H. Ito, Science, 2019, 366, 1500 –
1504; b) C. Schumacher, J. G. Hernández, C. Bolm, Angew. Chem. 2020,
132, 16499 – 16502; Angew. Chem. Int. Ed. 2020, 59, 16357 – 16360;
c) Y. Pang, J. W. Lee, K. Kubota, H. Ito, Angew. Chem. 2020, 132, 22759
– 22765; Angew. Chem. Int. Ed. 2020, 59, 22570 – 22576; d) T. Seo, N.
Toyoshima, K. Kubota, H. Ito, J. Am. Chem. Soc. 2021, 143, 6165 –
6175; e) K. J. Ardila-Fierro, S. Lukin, M. Etter, K. Užarević, I. Halasz, C.
Bolm, J. G. Hernández, Angew. Chem. 2020, 132, 13560 – 13564;
Angew. Chem. Int. Ed. 2020, 59, 13458 – 13462; f) J. Anderson, J. Mack,
Angew. Chem. 2018, 130, 13246 – 13249; Angew. Chem. Int. Ed. 2018,
57, 13062 – 13065; g) S. Ni, M. Hribersek, S. K. Baddigam, F. J. L. Ingner,
A. Orthaber, P. J. Gates, L. T. Pilarski, Angew. Chem. 2020, 133, 6734
– 6740; Angew. Chem. Int. Ed. 2020, 60, 6660 – 6666; h) Q. Cao, D. E.
Crawford, C. Shi, S. L. James, Angew. Chem. 2020, 132, 4508 – 4513;
Angew. Chem. Int. Ed. 2020, 59, 4478 – 4483; i) C. Bolm, R. Mocci, C.
Schumacher, M. Turberg, F. Puccetti, J. G. Hernández, Angew. Chem.
2018, 130, 2447 – 2450; Angew. Chem. Int. Ed. 2018, 57, 2423 – 2426.
a) M. T. J. Williams, L. C. Morrill, D. L. Browne, ACS Sustainable Chem.
Eng. 2020, 8, 17876 – 17881; b) W. I. Nicholson, A. C. Seastram, S. A.
Iqbal, B. G. Reed-Berendt, L. C. Morrill, D. L. Browne, ChemSusChem.
2020, 13, 131 – 135; c) A. C. Jones, W. I. Nicholson, H. R. Smallman, D.
L. Browne, Org. Lett. 2020, 22, 7433 – 7438; d) Q. Cao, W. I. Nicholson,
A. C. Jones, D. L. Browne, Org. Biomol. Chem. 2019, 17, 1722 – 1726;
e) Q. Cao, J. L. Howard, E. Wheatley, D. L. Browne, Angew. Chem. 2018,
130, 11509 – 11513; Angew. Chem. Int. Ed. 2018, 57, 11339 – 11343; f)
J. L. Howard, W. I. Nicholson, Y. Sagatov, D. L. Browne, Beilstein J. Org.
Chem. 2017, 13, 1950 – 1956; g) J. L. Howard, M. C. Brand, D. L. Browne,
Angew. Chem. 2018, 130, 16336 – 16340; Angew. Chem. Int. Ed. 2018,
57, 16104 – 16108.
Acknowledgements
W.I.N. thanks Cardiff University for a studentship. J.A.L. thanks
the Leverhulme Trust for a research fellowship (RPG-2019-260).
We thank Prof. Tom Sheppard (UCL) for helpful discussions. The
authors would like to thank Gavin Bluck, Andrei Iosub, George
Hodges, Faima Lazreg, Jean-Philippe Krieger, Kenneth Ling,
Christophe Grojean, Alan Robinson, and Maria Ciaccia for
valuable discussion.
Keywords: mechanochemistry • amides • amidation • ball-
[7]
milling
[1]
a) V. R. Pattabiraman, J. W. Bode, Nature, 2011, 480, 471 – 479; b) M.
Benaglia, M. Pirola, E. Massolo, Eur. J. Org. Chem. 2020, 2020, 4641 –
4651.
[2]
[3]
J. Boström, D. G. Brown, J. Med. Chem. 2016, 59, 4443 – 4458.
a) M. T. Sabatini, L. T. Boulton, H. F. Sneddon, T. D. Sheppard, Nature
Catalysis 2019, 2, 10 – 17; c) N. Schneider, D. M. Lowe, R. A. Sayle, M.
A. Tarselli, G. A. Landrum, J. Med. Chem. 2016, 59, 4385 – 4402; d) J.
R. Dunetz, J. Magano, G. A. Weisenburger, Org. Process Res. Dev. 2016,
20, 140 – 177.
[4]
a) M. P. Thompson, I. Peñafiel, S. C. Cosgrove, N. J. Turner, Org.
Process Res. Dev. 2019, 23, 9 – 18; b) J. B. Sperry, C. J. Minteer, J. Y.
Tao, R. Johnson, R. Duzguner, M. Hawksworth, S. Oke, P. F. Richardson,
R. Barnhart, D. R. Bill, R. A. Giusto, J. D. Weaver III, Org. Process Res.
Dev. 2018, 22, 1262 – 1275; c) D. J. C. Constable, P. J. Dunn, J. D.
Hayler, G. R. Humphrey, J. L. Leazer, Jr, R. J. Lindermann, K. Lorenz, J.
Manley, B. A. Pearlman, A. Wells, A. Zaks, T. Y. Zhang, Green Chem.
2007, 9, 411 – 420; d) M. C. Bryan, P. J. Dunn, D. Entwistle, F. Gallou,
S. G. Koenig, J. D. Hayler M. R. Hickey, S. Hughes, M. E. Kopach, G.
Moine, P. Richardson, F. Roschangar, A. Steven, F. J. Weiberth, Green
Chem. 2018, 20, 5082 – 5103.
[8]
[5]
For reviews on amide-forming reactions, see: a) E. Valeur, M. Bradley,
Chem. Soc. Rev. 2008, 38, 606 – 631; b) R. M. Lanigan, T. D. Sheppard,
Eur. J. Org. Chem. 2013, 2013, 7453 – 7465. c) C. L. Allen, J. M. J.
Williams, Chem. Soc. Rev. 2011, 40, 3405 – 3415; d) R. M. de Figueiredo,
J.-S. Suppo, J.-M. Campagne, Chem. Rev. 2016, 116, 12029 – 12122;
e) H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson, Chem. Soc. Rev.
2014, 43, 2714 – 2742; e) M. Todorovic, D. M. Perrin, Peptide Science
2020, 112, e24210; For selected examples of amidation protocols, see:
f) K. Ishihara, S. Ohara, H. Yamamoto, J. Org. Chem. 1996, 61, 4196 –
4197; g) T, Marcelli, Angew. Chem. 2010, 122, 6992 – 6995; Angew.
Chem. Int. Ed. 2010, 49, 6840 – 6843; h) B. Shen, D. M. Makley, J. N.
Johnston, Nature 2010, 465, 1027 – 1932; i) P. Starkov, T. D. Sheppard,
Org. Biomol. Chem. 2010, 9, 1320 – 1323; j) R. M. Lanigan, P. Starkov,
T. D. Sheppard, J. Org. Chem. 2013, 78, 4512 – 4523; k) P. Tang, Org.
Synth. 2009, 81, 262 – 272; l) M. T. Sabatini, L. T. Boulton, T. D.
Shepphard, Sci. Adv. 2017, 3, e1701028; m) J. W. Bode, S. S. Sohn, J.
Am. Chem. Soc. 2007, 129, 13798 – 13799; n) H. U. Vora, T. Rovis, J.
Am. Chem. Soc. 2007, 129, 13796 – 13797; o) W.-J. Yoo, C.-J. Li, J. Am.
Chem. Soc. 2006, 128, 13064 – 13065; p) C. Gunanathan, Y. Ben-David,
D. Milstein, Science 2007, 317, 790 – 792; q) L. U. Nordstrøm, H. Vogt,
R. Madsen, J. Am. Chem. Soc. 2008, 130, 17672 – 17673; r) W.-K. Chan,
[9]
a) J. L. Howard, Q. Cao, D. L. Browne, Chem. Sci. 2018, 9, 3080 − 3094;
b) J.-L. Do, T. Friščić, ACS Cent. Sci. 2017, 3, 13 − 19; c) J. G.
Hernandez, C. Bolm, J. Org. Chem. 2017, 82, 4007 − 4019; d) O.
Eguaogie, J. S. Vyle, P. F. Conlon, M. A. Gîlea, Y. Liang, Beilstein J. Org.
Chem. 2018, 14, 955 − 970; e) T.-X. Metro, J. ́ Martinez, F. Lamaty, ACS
Sustainable Chem. Eng. 2017, 5, 9599 − 9602; f) S. L. James, C. J.
Adams, C. Bolm, D. Braga, P. Collier, T. Frisčič, F. Grepioni, K. D. M.
Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P.
Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev.
2012, 41, 413 − 447; g) F. Gomollón-Bel, Chemistry International, 2019,
41, 12 – 17.
[10] a) V. Declerck, P. Nun, J. Martinez, F. Lamaty, Angew. Chem. 2009, 121,
9482 – 9485; Angew. Chem. Int. Ed. 2009, 48, 9318 – 9321; b) G. Kaupp,
J. Schmeyers. J. Boy, Tetrahedron, 2000, 56, 6899 – 6911; c) J. G.
5
This article is protected by copyright. All rights reserved.