5 J. S. Lomas and J. Vaissermann, J. Chem. Soc., Perkin Trans. 2, 1998,
1777.
Molecular mechanics calculations
Steric energies and geometries were calculated with Allinger’s
MM2(85) force field.18 The alcohol and deoxygenation product
rotamers give the following steric energies: 1S-Me, 63.17; 1A-
Me, 64.98; 7S-Me, 50.79; 7A-Me, 52.90 kcal molϪ1. To estimate
the steric energies of the phenol rotamers it was necessary to
introduce parameters for a type 2–6–21 bond angle; it was
taken as equivalent to type 1–6–21; values were 47.04 (4S)
and 49.46 (4A) kcal molϪ1. Inclusion of the phenolic oxygen in
the π-electron system reduced these values by about 0.1 kcal
6 A. G. Davies and A. G. Neville, J. Chem. Soc., Perkin Trans. 2, 1991,
2021.
7 G. A. Olah, G. K. S. Prakash and R. Krishnamurti, J. Am. Chem.
Soc., 1990, 112, 6422.
8 J. S. Lomas and J. E. Anderson, J. Org. Chem., 1995, 60, 3246.
9 J. S. Lomas, J. Chem. Soc., Perkin Trans. 2, 1996, 2601.
10 G. A. Olah, M. D. Heagy and G. K. S. Prakash, J. Org. Chem., 1993,
58, 4851; M. D. Heagy, G. A. Olah, G. K. S. Prakash and J. S.
Lomas, J. Org. Chem., 1995, 60, 7355.
11 J. S. Lomas, A. Adenier, C. Cordier and J. C. Lacroix, J. Chem. Soc.,
Perkin Trans. 2, 1998, 2647.
molϪ1
.
12 J. S. Lomas and J. Vaissermann, J. Chem. Soc., Perkin Trans. 2, 1996,
1831.
13 R. A. Rennels, A. J. Maliakal and D. B. Collum, J. Am. Chem. Soc.,
1998, 120, 421 and references therein.
Kinetic modelling
In KINAL29 the solution of kinetic differential equations is
based on a fourth-order semi-implicit Runge–Kutta method. In
our hands it is associated with a Simplex routine, making it
possible to optimize a number of rate constants by matching
experimental yields (“targets”) with those calculated. Since the
number of targets is almost invariably smaller than the number
of rate constants in the system, certain rate constants are given
arbitrary values. Normally, the relative rate constants are
insensitive to these values. For calculations involving water it
was assumed that the initial concentration of water in dichloro-
methane was the upper limit indicated for this reagent (ACS
grade, ≤0.2%).
14 D. N. Kursanov, Z. N. Parnes and N. M. Loim, Synthesis, 1974, 633;
I. Fleming, Organic Silicon Chemistry in Comprehensive Organic
Chemistry, ed. D. Barton and W. D. Ollis, Pergamon Press, Oxford,
1979, vol. 3, p. 541; Y. Nagai, Org. Prep. Proced. Int., 1980, 12, 13;
W. P. Weber, Silicon Reagents for Organic Synthesis, Springer-
Verlag, Berlin-Heidelberg, 1983, p. 273; E. W. Colvin, Silicon
Reagents in Organic Synthesis, Academic Press, London, 1988;
E. Keinan, Pure Appl. Chem., 1989, 61, 1737; G. L. Larson
in The Chemistry of Organosilicon Compounds, ed. S. Patai and
Z. Rappoport, Wiley Interscience, Chichester, 1989, Part 1, ch. 11,
p. 776.
15 J. S. Lomas and J. Vaissermann, J. Chem. Soc., Perkin Trans. 2, 1997,
2589.
16 H. W. Gschwend and H. R. Rodriguez, Org. React. (N.Y.), 1979, 26,
1.
X-Ray crystallography
17 M. Ito and M. Hirota, Bull. Soc. Chem. Jpn., 1981, 54, 2093.
18 N. L. Allinger, Quantum Chemistry Program Exchange, Program
MMP2(85), Indiana University, USA.
anti-(2-Anisyl)di(1-adamantylmethane), 7A-Me: C28H38O.
Crystal data.¶ M = 390.6. Monoclinic a = 10.945(8), b =
25.069(11), c = 16.530(10) Å, β = 104.71(5), V = 4387(5) Å3 (by
least squares refinement on diffractometer angles for 25 auto-
matically centred reflections, λ = 0.71069 Å), space group P21/n,
Z = 8, Dx = 1.18 g cmϪ3. The asymmetric unit contains two
independent molecules. Colourless prismatic crystals, µ(Mo-
19 J. Vaissermann, unpublished results.
20 R. Taylor and O. Kennard, Acc. Chem. Res., 1984, 17, 320.
21 T. Ohishi, J. Yamada, Y. Inui, T. Sakaguchi and M. Yamashita,
J. Org. Chem., 1994, 59, 7521.
22 K. Pihlaja and A. Lampi, Acta. Chem. Scand., Ser. B, 1986, 40, 196.
23 (a) H. Perst, Oxonium Ions in Organic Chemistry, Verlag Chemie,
Weinheim, 1971; (b) G. A. Olah, Angew. Chem., Int. Ed. Engl., 1993,
32, 767 and references therein.
Kα) = 0.64 cmϪ1
.
24 J. L. Fry and G. J. Karabatsos, in Carbonium Ions, ed. G. A. Olah
and P. v. R. Schleyer, Wiley-Interscience, New York, vol. II, 1970,
ch. 14.
25 R. A. McClelland, Can. J. Chem., 1975, 53, 2763.
26 J. K. Pau, J. K. Kim and M. C. Caserio, J. Am. Chem. Soc., 1978,
100, 3838, 4242.
27 U. R. Ghatak, B. Sanyal, S. Ghosh, M. Sarkar, M. S. Raju and
E. Wenkert, J. Org. Chem., 1980, 45, 1081.
28 H. Mayr, N. Basso and G. Hagen, J. Am. Chem. Soc., 1992, 114,
3060.
Data collection and processing. Enraf-Nonius CAD4 diffract-
ometer, ω/2θ mode with ω scan width = 0.8 ϩ 0.345 tan θ,
graphite-monochromated Mo-Kα radiation. 8342 reflections
measured (1 ≤ θ ≤ 25Њ), 7699 unique, giving 3523 with I > 3σ(I).
Structure analysis and refinement. Full-matrix least-squares
refinement with all non-hydrogen atoms anisotropic; hydrogens
located from Fourier difference map with one, overall, refined
isotropic thermal parameter (524 refinable parameters). No
absorption correction. Final R and Rw (Chebyshev series)
values are 0.051 and 0.064. Program used is the PC version of
CRYSTALS37 for refinements and CAMERON38 for views.
29 T. Turányi, Comput. Chem., 1990, 14, 253. T. Turányi, New. J.
Chem., 1990, 14, 795.
30 For recent contributions to the silylium ion debate, see: S. H.
Strauss, Chemtracts: Inorg. Chem., 1993, 5, 119; J. B. Lambert,
S. Zhang and S. M. Ciro, Organometallics, 1994, 13, 2430; J. B.
Lambert and S. Zhang, Science, 1994, 263, 984; G. A. Olah,
G. Rasul, X. Li, H. A. Buchholz, G. Sandford and G. K. S. Prakash,
Science, 1994, 263, 983; L. Pauling, Science, 1994, 263, 983; C. A.
Reed and Z. Xie, Science, 1994, 263, 985; J. B. Lambert, L. Kania
and S. Zhang, Chem. Rev., 1995, 95, 1191; G. A. Olah, G. Rasul,
X. Y. Li and G. K. S. Prakash, Bull. Soc. Chim. Fr., 1995, 132, 569;
Z. Xie, R. Bau, A. Benesi and C. A. Reed, Organometallics, 1995, 14,
3933; L. Olsson, C. H. Ottosson and D. Cremer, J. Am. Chem. Soc.,
1995, 117, 7460; M. Arshadi, D. Johnels, U. Edlund, C. H. Ottosson
and D. Cremer, J. Am. Chem. Soc., 1996, 118, 5120; Z. Xie,
J. Manning, R. W. Reed, R. Mathur, P. D. W. Boyd, A. Benesi and
C. A. Reed, J. Am. Chem. Soc., 1996, 118, 2922; J. B. Lambert and
Y. Zhao, Angew. Chem., Int. Ed. Engl., 1997, 36, 400; H. U.
Steinberger, T. Müller, N. Auner, C. Maerker and P. v. R. Schleyer,
Angew. Chem., Int. Ed. Engl., 1997, 36, 626; P. v. R. Schleyer,
Science, 1997, 275, 39; J. Belzner, Angew. Chem., Int. Ed. Engl.,
1997, 36, 1277; C. A. Reed, Acc. Chem. Res., 1998, 31, 325.
31 J. Chojnowski, W. Fortuniak and W. Stanczyk, J. Am. Chem. Soc.,
1987, 109, 7776; J. Chojnowski and W. Stanczyk, Adv. Organomet.
Chem., 1990, 30, 243.
Acknowledgements
We are indebted to Ms Claude Charvy for the GC-MS studies,
to Dr A. Adenier for IR measurements and to Drs M. Hedaya-
tullah and J-M. El Hage Chahine for helpful discussions. We
thank Dr T. Turányi for access to KINAL and P. Levoir for help
in programming the Simplex version.
p2/1999/1639 for crystallographic files in .cif format.
References
1 R. C. Fort, Adamantane: the Chemistry of Diamond Molecules,
Marcel Dekker, New York, 1976.
2 J. S. Lomas and J. E. Dubois, Tetrahedron, 1981, 37, 2273.
3 (a) J. S. Lomas, P. K. Luong and J. E. Dubois, J. Org. Chem., 1977,
42, 3394; (b) J. S. Lomas and V. Bru-Capdeville, J. Chem. Soc.,
Perkin Trans. 2, 1994, 459.
4 J. S. Lomas and J. Vaissermann, Bull. Soc. Chim. Fr., 1996, 133, 25;
J. Vaissermann and J. S. Lomas, Acta Crystallogr., Sect. C, 1997, 53,
1341.
32 Y. Apeloig, O. Merin-Aharoni, D. Danovich, A. Ioffe and S. Shaik,
Isr. J. Chem., 1993, 33, 387.
33 H. Tashiro, K. Kikukawa, K. Ikenaga, N. Shimizu and M. Mishima,
J. Chem. Soc., Perkin Trans. 2, 1998, 2435.
J. Chem. Soc., Perkin Trans. 2, 1999, 1639–1648
1647