Communication
ChemComm
8 A. Mishra, A. Misra, T. S. Vaishnavi, C. Thota, M. Gupta, S. Ramakumar
and V. S. Chauhan, Chem. Commun., 2013, 49, 2688–2690.
9 L. M. Yan, M. Tatarek-Nossol, A. Velkova, A. Kazantzis and
A. Kapurniotu, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 2046–2051.
10 J. Hu, Y. P. Yu, W. Cui, C. L. Fang, W. H. Wu, Y. F. Zhao and Y. M. Li,
Chem. Commun., 2010, 46, 8023–8025.
11 G. J. S. Cooper, J. F. Aitken and S. Zhang, Diabetologia, 2010, 53,
1011–1016.
12 J. R. Brender, S. Salamekh and A. Ramamoorthy, Acc. Chem. Res.,
2012, 45, 454–462.
13 R. A. Ritzel, J. J. Meier, C. Y. Lin, J. D. Veldhuis and P. C. Butler,
Diabetes, 2007, 56, 65–71.
14 Y. P. Yu, P. Lei, J. Hu, W. H. Wu, Y. F. Zhao and Y. M. Li, Chem.
Commun., 2010, 46, 6909–6911.
15 M. S. Chen, D. S. Zhao, Y. P. Yu, W. W. Li, Y. X. Chen, Y. F. Zhao and
Y. M. Li, Chem. Commun., 2013, 49, 1799–1801.
ball state. Perhaps HBS 1 blocked organelle leakage from a cell
(Fig. S22 in ESI†).
Using our understanding of the a-helix-to-b-sheet transition
mechanism as a basis for our design, we synthesized a helix
mimetic regulator which promoted the formation of large nontoxic
oligomers and reduced the cytotoxicity induced by small oligomers.
We suggest the targeting of the helix intermediates in the very early
stage of the aggregation as an alternative therapeutic approach to
amyloid diseases. This study not only provided a strategy for
inhibitor design based on the helix intermediates of hIAPP but
also revealed some clues toward understanding the molecular
events involved in hIAPP aggregation.
16 I. Saraogi, J. A. Hebda, J. Becerril, L. A. Estroff, A. D. Miranker and
A. D. Hamilton, Angew. Chem., Int. Ed., 2010, 49, 736–739.
17 Y. Xu, J. Shen, X. Luo, W. Zhu, K. Chen, J. Ma and H. Jiang, Proc.
Natl. Acad. Sci. U. S. A., 2005, 102, 5403–5407.
18 D. Liu, Y. Xu, Y. Feng, H. Liu, X. Shen, K. Chen, J. Ma and H. Jiang,
Biochemistry, 2006, 45, 10963–10972.
19 Y. Hong, L. Meng, S. Chen, C. W. Leung, L. T. Da, M. Faisal,
D. A. Silva, J. Liu, J. W. Lam, X. Huang and B. Z. Tang, J. Am.
Chem. Soc., 2012, 134, 1680–1689.
20 A. Laganowsky, C. Liu, M. R. Sawaya, J. P. Whitelegge, J. Park, M. Zhao,
A. Pensalfini, A. B. Soriaga, M. Landau, P. K. Teng, D. Cascio, C. Glabe
and D. Eisenberg, Science, 2012, 335, 1228–1231.
This work was supported by the major State Basic Research
Development Program of China (973 program) (No. 2013CB910700,
2012CB821600) and grants from the National Natural Science Foun-
dation of China (No. 91313301, 21472109, 21261130090). This work
was supported by Tsinghua National Laboratory for Information
Science and Technology and Beijing Nuclear Magnetic Resonance
Center. We thank Prof. Zhixiang Yu in Peking University for help with
the microwave synthesis, Hong Liu, Dongxiang Liu, Yechun Xu in
Shanghai Institute of Materia Medica Chinese Academy of Sciences
and Dong Wang in Tsinghua University for helpful comments on
molecular dynamics simulation.
21 J. C. Stroud, C. Liu, P. K. Teng and D. Eisenberg, Proc. Natl. Acad. Sci.
U. S. A., 2012, 109, 7717–7722.
22 N. F. Dupuis, C. Wu, J.-E. Shea and M. T. Bowers, J. Am. Chem. Soc.,
2011, 133, 7240–7243.
23 N. F. Dupuis, C. Wu, J. E. Shea and M. T. Bowers, J. Am. Chem. Soc.,
2009, 131, 18283–18292.
24 J. J. Wiltzius, S. A. Sievers, M. R. Sawaya and D. Eisenberg, Protein
Sci., 2009, 18, 1521–1530.
Notes and references
1 G. J. Cooper, Endocr. Rev., 1994, 15, 163–201.
2 P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden,
T. D. O’Brien and K. H. Johnson, Proc. Natl. Acad. Sci. U. S. A., 25 L. K. Henchey, J. R. Porter, I. Ghosh and P. S. Arora, ChemBioChem,
1987, 84, 3881–3885. 2010, 11, 2104–2107.
3 A. Kapurniotu, A. Schmauder and K. Tenidis, J. Mol. Biol., 2002, 315, 26 L. K. Henchey, S. Kushal, R. Dubey, R. N. Chapman, B. Z. Olenyuk
339–350. and P. S. Arora, J. Am. Chem. Soc., 2010, 132, 941–943.
4 S. Gilead and E. Gazit, Angew. Chem., Int. Ed., 2004, 43, 4041–4044. 27 E. L. Humphris and T. Kortemme, Structure, 2008, 16, 1777–1788.
5 R. Mishra, B. Bulic, D. Sellin, S. Jha, H. Waldmann and R. Winter, 28 R. N. Chapman and P. S. Arora, Org. Lett., 2006, 8, 5825–5828.
Angew. Chem., Int. Ed., 2008, 47, 4679–4682.
6 R. Mishra, D. Sellin, D. Radovan, A. Gohlke and R. Winter,
ChemBioChem, 2009, 10, 445–449.
29 R. N. Chapman, G. Dimartino and P. S. Arora, J. Am. Chem. Soc.,
2004, 126, 12252–12253.
30 D. Wang, K. Chen, J. L. Kulp Iii and P. S. Arora, J. Am. Chem. Soc.,
2006, 128, 9248–9256.
7 J. Zheng, C. Liu, M. R. Sawaya, B. Vadla, S. Khan, R. J. Woods,
D. Eisenberg, W. J. Goux and J. S. Nowick, J. Am. Chem. Soc., 2011, 31 Y. Fezoui and D. B. Teplow, J. Biol. Chem., 2002, 277, 36948–36954.
133, 3144–3157.
32 A. Abedini and D. P. Raleigh, Phys. Biol., 2009, 6, 015005.
2098 | Chem. Commun., 2015, 51, 2095--2098
This journal is ©The Royal Society of Chemistry 2015