308
T. Horiuchi et al. / Bioorg. Med. Chem. Lett. 19 (2009) 305–308
Table 3
Antiproliferative effects of 1a, 15, 20 and 21 (IC50: ng/mL)a against various tumor cell lines
Compound
WiDrb
DLD-1b
HCT116b/ Tere-1c
HCT116b/ SN2-3d
MKN28e
MDA-MB-231f
MDA-MB-468f
BL-6g
P388h
1a
15
20
21
1360
19
263
889
1120
37
221
506
1210
7
290
973
1340
5
269
755
2860
49
686
1390
1870
19
279
919
48
8
159
315
2440
45
379
1090
1010
6
131
370
a
The IC50 values are the concentrations needed to inhibit cell growth by 50% by MTT assay.
b
c
d
e
f
Human colon cancer.
Docetaxal-resistant cell established in-house.
SN-38-resistant cell established in-house.
Human gastric cancer.
Human breast cancer.
Murine melanoma.
g
h
Murine leukemia.
Table 4
15 is efficacious in xenograft models of human colon carcinoma.
These results provide valuable information for the design of
CDK4 inhibitor. Further work will be reported on the improvement
of CDK4 selectivity and the physical profile in the near future.
Antitumor effects of 15 against HCT116 solid tumors
Route
dose
(mg/kg)
Administration
schedule
IRTVmaxa
(%)
BWLmaxb
(%)
D/Nc
i.v.
p.o.
200.0
200.0
qdx4
qdx4
67.9
54.1
22.6
4.6
0/5
0/5
Acknowledgments
a
Maximum Inhibition Rate of Tumor volume.
Maximum Body Weight Loss.
Number of mice dead from toxicity/Number of mice used.
b
c
We thank members of Biological Research Laboratories
IV for their biological assays and the analysis group of Daiichi
Sankyo R&D Associe Co., Ltd. for their analytical and spectral
determinations.
In the G1-S transition of the cell cycle, inhibition of cellular
CDK4 activity will result in cell cycle arrest at the G1 phase. To
investigate whether these compounds will induce a G1 cell cycle
arrest, we evaluated the effects of selected compounds 15 and 21
by cell cycle analysis in tumor cells. A cell cycle distribution study
was performed by treating HCT116 cells with various concentra-
tions of compound 15. Cells were collected after 16 hr treatment
of the compounds and the DNA content of the cells was assessed
by flow cytometry analysis.24 After treating the tumor cell with
15, a significant accumulation of the G1 population (64%) was ob-
served and there were decreases in the S and G2/M populations at
a concentration of 500 ng/mL. Compound 21 caused an increase in
the G1 population in a dose-dependent manner, too. This observa-
tion of G1 cell cycle arrest is consistent with its cyclin D1/CDK4
inhibitory activity.
Finally, compound 15 caused tumor growth delay in the xeno-
graft model of human colon carcinoma HCT116 cell. Taking into ac-
count the poor solubility of 15, hydrochloride salt dissolved with
40% Captisol25 was used. A reduction in colon tumor growth of
67.9% was observed using i.v. administration of 15 when given at
a dose of 200 mg/kg once a day for 4 days continuously. The anti-
tumor effect was also found with a 54.1% reduction after oral
administration at a similar dose without any serious toxicity, as
shown in Table 4.
References and notes
1. Hunter, T.; Pines, J. Cell 1994, 79, 573.
2. Sherr, C. Science 1996, 274, 1672.
3. Morgan, D. O. Annu. Rev. Cell Dev. Biol. 1997, 13, 261.
4. Pines, J. Trends Biochem. Sci. 1993, 18, 195.
5. Pines, J. Nat. Cell Biol. 1999, 1, E73.
6. Shapiro, G. I. J. Clin. Oncol. 2006, 24, 1770.
7. Khleif, S. N.; DeGregori, J.; Yee, C. L.; Otterson, G. A.; Kaye, F. J.; Nevins, J. R.;
Howley, P. M. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 4350.
8. Dyson, N. Gene Dev. 1998, 12, 2245.
9. Sandhu, C.; Slingerland, J. Cancer Detect. Prev. 2000, 24, 107.
10. Bringold, F.; Serrano, M. Exp. Gerontol. 2000, 35, 317.
11. Roussel, M. F. Oncogene 1999, 18, 5311.
12. Nevins, J. R. Hum. Mol. Gen. 2001, 10, 699.
13. Barnes, D. M.; Gillett, C. E. Breast Cancer Res. Treat. 1998, 52, 1.
14. Grillo, M.; Bott, M. J.; Khandke, N.; McGinnis, J. P.; Miranda, M.; Meyyappan,
M.; Rosfjord, E. C.; Rabindran, S. K. Breast Cancer Res. Treat. 2006, 95, 185.
15. Malumbres, M.; Barbacid, M. Cancer Cell 2006, 9, 2.
16. Buolamwini, J. K. Curr. Pharm. Design 2000, 6, 379.
17. Sanderowicz, A. M. Cancer Biol. Ther. 2003, 2, S84.
18. Hirai, H.; Kawanishi, N.; Iwasawa, Y. Curr. Top. Med. Chem. 2005, 5, 167.
19. (a) Fry, D. W.; Harvey, P. J.; Keller, P. R.; Elliott, W. L.; Meade, M.; Trachet, E.;
Albassam, M.; Zheng, X.; Leopold, W. R.; Pryer, N. K.; Toogood, P. L. Mol. Cancer
Ther. 2004, 3, 1427; (b) VanderWel, S. N.; Harvey, P. J.; McNamara, D. J.; Repine,
J. T.; Keller, P. R.; Quin III, J.; Booth, R. J.; Elliott, W. L.; Dobrusin, E. M.; Fry, D.
W.; Toogood, P. L. J. Med. Chem. 2005, 48, 2371; (c) Toogood, P. L.; Harvey, P. J.;
Repine, J. T.; Sheehan, D. J.; VanderWel, S. N.; Zhou, H.; Keller, P. P.; McNamara,
D. J.; Sherry, D.; Zhu, T.; Brodfuehrer, J.; Choi, C.; Barvian, M. R.; Fry, D. W. J.
Med. Chem. 2005, 48, 2388.
20. Tinney, F. J.; Cetenko, W. A.; Kerbleski, J. J.; Connor, D. T.; Sorenson, R. J.; Herzig,
D. J. J. Med. Chem. 1981, 24, 878.
21. Hozien, Z. A.; Atta, F. M.; Hassan, Kh. M.; Abdel-Wahab, A. A.; Ahmed, S. A.
Synth. Commun. 1996, 26, 3733.
In conclusion,
a
series of thieno[2,3-d]pyrimidin-4-yl
hydrazones was synthesized and evaluated, and several 2-pyrdin-
ecarboxaldehyde [6-(tert-butyl)thieno [2,3-d]pyrimidine-4-yl]-
hydrazones were shown to be potent, selective inhibitors of
CDK4 with improved physical profiles. In addition, these com-
pounds have antiproliferative activities and act as cytotoxic agents
with the ability to prevent cell progression. Moreover, compound
22. Schinke, E.; Gewald, K.; Böttcher, H. Chem. Ber. 1966, 99, 94.
23. Beam, C. F.; Sandifer, R. M.; Foote, R. S.; Hauser, C. R. Synth. Commun. 1976, 6, 5.
24. Becton Dickinson FACS Calibur flow cytometer was used.
25. Solubilizing agent of CyDex Pharmaceuticals, Inc. was used.