1616
M. Heras et al.
PAPER
Table 5 MS, IR and NMR Data of Imidazoles 7, 8 and Dihydroimidazoxazole 9
Prod-
uct
MS
m/z (%)
IR (KBr)
1H NMR (CDCl3/TMS)
d, J (Hz)
13C NMR (CDCl3/TMS)
d
n (cm-1)
7a
7b
7c
388 ([M+2]+, 6), 387 ([M+1]+, 3438, 3063, 1600, 1492, 1454, 3.74 (dd, 1 H, J = 14.0, 8.8),
40.85 (t, CH2), 54.5 (t, CH2),
73.0 (d, CH), 118.6, 124.6,
24), 386 ([M]+, 8), 293 (24),
279 (10), 266 (21), 265 (100),
264 (23), 247 (16), 145 (18),
121 (12), 105 (13), 93 (46), 92
(25), 91 (31), 79 (15), 63 (11),
55 (17)
1412, 1190, 1061, 751, 696
3.9 (dd, 1 H, J = 14.0, 3.3),
4.15(s, 2 H), 4.8 (s, 1 H, OH), 125.85, 126.6, 127.3, 127.9,
4.96 (dd, 1 H, J = 8.8, 3.3),
7.1–7.65 (m, 16 H)
128.4, 128.45, 128.5, 128.75,
(d, CHarom), 133.45, 137.7,
140.2, 141.05, 141.6 (s, Carom
)
312 ([M+2]+, 20), 311
3205, 2959, 2924, 2853, 1567, 0.9 (t, 3 H, J = 6.4), 1.25–1.35 13.55 (q, CH3), 14.0 (q, CH3),
1468, 1412 (m, 17 H), 1.5–1.6 (m, 2 H), 20.5(q, CH3), 22.6, 28.6, 29.0,
2.2 (s, 3 H), 2.9–3.0 (m, 2 H), 29.25, 29.45, 29.5, 29.6,
([M+1]+, 100), 310 ([M]+, 6),
255 (14), 171 (32), 170 (19)
3.79 (dd, 1 H, J = 14, 8.4),
4.01 (dd, 1 H, J = 14, 3.4),
4.1–4.15 (m, 1 H), 6.75 (s,
1 H)
31.85, 35.5, 53.9 (t, CH2), 66.9
(d, CH), 118.6 (d, CHarom),
137.9, 140.1 (s, Carom
)
438 ([M+2]+, 24), 437
3150, 3063, 3030, 2954, 2925, 0.91 (t, 3 H, J = 6.4), 1.25–
14.05 (q, CH3), 22.6, 28.55,
([M+1]+, 86), 436 ([M]+, 9),
279 (25), 203 (10), 191 (17),
190 (27), 189 (21), 179 (11),
178 (18), 177 (74), 176 (100),
175 (20), 173 (10)
2853, 1602, 1489, 1455, 1415, 1.45 (m, 14 H), 1.55–1.60 (m, 29.05, 29.25, 29.4, 29.5,
1191, 1063, 747, 698
2 H), 3.0–3.05 (m, 2 H), 4.05
(dd, 1 H, J = 14, 9), 4.23 (dd,
29.65, 31.85, 35.65, 54.8 (t,
CH2), 73.15 (d, CH), 118.25,
1 H, J = 14,0, 5.0 (s, 1 H, OH), 124.55, 125.9, 126.5, 127.95,
5.19 (dd, J = 9, 3), 7.2–7.6 (m, 128.35, 128.6, (d, CHarom),
11 H)
133.5, 141.2, 141.25, 141.7 (s,
Carom
)
8a
420 ([M+2]+, 28), 419
3448, 3149, 3070, 3050, 3030, 2.5 (s, 1 H, OH), 3.73 (dd, 1 H, 54.85 (t, CH2), 62.1 (t, CH2),
2924, 1596, 1496, 1455, 1412, J = 14, 8.8), 4.2 (dd, 1 H, J = 73.25 (d, CH), 121.75, 125.3,
1376, 1329, 1256, 1236, 1152, 14.0, 3), 4.57 (dd, 1 H, J = 8.8, 125.6 (d, CHarom), 127.25 (s,
([M+1]+, 100), 401 (10), 293
(11), 265 (45), 264 (10), 93
(16), 91 (16), 65 (22)
1113, 1089, 1061, 962, 906,
786, 762, 696
3), 4.67, 4.70 (2d, 2 H, J = 14), Carom), 127.8, 128.2, 128.6,
7.15–7.85 (m, 16 H)
128.65, 128.7, 129.05, 131.2
(d, CHarom), 132.4, 138.8,
140.3, 141.75 (s, Carom
)
8b
8c
346([M+2]+, 18), 345
3371, 2954, 2925, 2855, 1559, 0.93 (t, 3 H, J = 6.6), 1.25–1.4 13.45 (q, CH3), 14.0 (q, CH3),
1463, 1422, 1344, 1322, 1217, (m, 17 H), 1.75–1.9 (m, 2 H), 20.7 (q, CH3), 21.8, 22.6, 28.1,
([M+1]+, 100), 344 ([M]+, 8),
141 (58), 140 (12), 139 (68)
1154, 1118, 1012, 937, 841,
780, 711
2.2 (s, 3 H), 2.4 (s, 1 H, OH),
3.4–3.45 (m, 2 H), 4.0–4.15
(m, 2H), 4.4–4.45 (m, 1 H),
6.9 (s, 1 H)
28.9, 29.2, 29.4, 29.6, 31.8,
54.45, 55.4 (t, CH2), 67.65,
122.3 (d, CH), 138.5, 140.3 (s,
Carom
)
470 ([M+2]+, 31), 469
([M+1]+, 100), 468 ([M]+, 4),
279 (12), 277 (11), 266 (15),
265 (68), 264 (17), 263 (52),
261 (11), 245 (24), 193 (20),
191 (49)
3415, 3143, 3063, 3030, 2953, 0.92 (t, 3 H, J = 6.4), 1.2–1.5
2925, 2854, 1715, 1602, 1489, (m, 14 H), 1.8–2.0 (m, 2 H),
1463, 1404, 1377, 1321, 1224, 2.85 (s, 1 H, OH), 3.5–3.55
14.05 (q, CH3), 21.85, 22.6,
28.15, 28.9, 29.2, 29.4, 31.8,
55.1, 55.2 (t, CH2), 73.65, (d,
1150, 1115, 1091, 1062, 760,
701
(m, 2 H), 4.38 (dd, 1 H, J = 14, CH), 121.2, 125.2, 125.8,
8.6), 4.78 (dd, 1 H, J = 14, 127.7, 128.35, 128.6, 128.7 (d,
3.2), 5.2 (dd, 2 H, J = 8.6, 3.2), CHarom), 132.5, 140.35,
7.3–7.8 (m, 11 H) 141.35, 141.55 (s, Carom
)
9
263 ([M+1]+, 13), 262 ([M]+,
3029, 2882, 1604, 1585, 1571, 4.21 (dd, 1 H, J = 10, 8), 4.73 50.25 (d, CH), 86.7 (t, CH2),
65), 171 (29), 128 (12), 116
(23), 105 (11), 104 (100), 103 930, 765, 709, 695
(23), 78 (16), 77 (18)
1494, 1480, 1381, 1286, 976,
(dd, 1 H, J = 10, 8), 6.41 (t,
1 H, J = 8), 7.25–7.8 (m,
11 H)
107.9, 123.8, 126.05, 126.55,
128.5, 128.9, 129.2, (d,
CHarom), 135.0, 137.9, 141.0,
159.1 (s, Carom
)
ing material was recovered almost quantitatively (Scheme tions used to efficiently achieve the transformations to
3).
these novel fused imidazoxazoles of type 9, we decided to
explore further the synthetic applicability of these find-
ings. With the aim of adapting the methodology to the sol-
id support12 in such a way that could afford libraries of
fused imidazoxazoles with increased molecular diversity,
we initially explored in solution an epoxidation reaction
on the carbonyl group in imidazoles of type 3. Epoxide
Obviously, the entropy factor seems to be the driving
force for the formation of fused imidazoxazoles 9, favour-
ing intramolecular versus intermolecular nucleophilic ad-
dition-elimination reactions in electron rich imidazoles.
Therefore, due to the exceptionally mild reaction condi-
Synthesis 1999, No. 9, 1613–1624 ISSN 0039-7881 © Thieme Stuttgart · New York