COMMUNICATIONS
Kleij, H. Kleijn, J. T. B. H. Jastrzebski, A. L. Spek, G. van Koten,
Organometallics 1999, 18, 277 ± 285.
[9] J. W. Jenkins, N. L. Lavery, P. R. Guenther, H. W. Post, J. Org. Chem.
1948, 13, 862± 895.
[10] Similar hyperbranched polycarbosilanes: C. Lach, P. Müller, H. Frey,
R. Mülhaupt, Macromol. Rapid Commun. 1997, 18, 253 ± 260.
[11] See Supporting Information for more details about the obtained
hyperbranched polymers.
lyzed reaction. Table 1 shows that 5 is indeed an active
catalyst for this reaction. Although the initial activity of 5
expressed in TOF per Pd site per h is somewhat lower than
that of 6b, the total turnover number (TTN)/Pd site for both
6b and 5 are similar.
In summary, we have established a general route to
nanosize, hyperbranched-polycarbosilane compounds that
are functionalized with aryldiamine metal complexes using a
lithiation/transmetalation procedure. The PdII centers in the
soluble, macromolecular catalyst 5 function as independent
catalytic sites in a standard aldol condensation reaction and
their activity is similar to that of the single-site Pd catalyst 6b.
To our knowledge, this is the first example of the use of
hyperbranched polymers as soluble macromolecular supports
for homogeneous catalysis. Moreover, the catalyst support
properties of hyperbranched polymers are very similar to
those of analogous dendrimers; thus, structural perfection is
not always required. Purification of the polymers 3 and 4 by
means of dialysis shows that 5 is suitable for continuous
membrane applications.
[12] The theoretical mass of the repeat unit of the HCS polymer 4 is 934.96
and contains two NCN-PdCl groups. However, the undesired double
bond isomerization process (see main text) lowers the average
molecular weight of a repeat unit to 875.4 gmolÀ1
.
[13] See for instance: a) R. Kuwano, H. Miyazaki, Y. Ito, Chem. Commun.
1998, 71 ± 72; b) M. A. Stark, C. Richards, Tetrahedron Lett. 1997, 38,
5881 ± 5884; c) F. Gorla, A. Togni, L. M. Venanzi, A. Albinati, F.
Lianza, Organometallics 1994, 13, 1607 ± 1616.
Experimental Section
Effective Gelation of Water Using a Series of
Bis-urea Dicarboxylic Acids**
Standard protocol for the catalytic aldol condensation reaction: 1 mol% of
Pd catalyst was added to a mixture of benzaldehyde (2.4 mmol), methyl
isocyanoacetate (1.6 mmol), mesitylene (1.6 mmol, internal standard), and
EtN(iPr)2 (10 mol%) in CH2Cl2 (10 mL). Samples were taken from the
reaction mixture at regular time intervals, after careful removal of the
solvent 1H NMR spectra of these samples were recorded.
Lara A. Estroff and Andrew D. Hamilton*
A wide range of small organic molecules has been found,
either through design or serendipity, to gel a variety of organic
solvents.[1] The property of gelation is thought to arise from
the self-assembly of these small molecules into fibers, which,
like polymer gels, become entangled and trap solvent.[2] The
formation of fibers requires a stabilizing intermolecular
interaction and represents a balance between the tendency
of the molecules to dissolve or to aggregate in a given solvent.
Organogelators often have hydrogen-bond donors and
acceptors that promote aggregation and subsequent fiber
formation. The attachment of long alkyl chains onto the
hydrogen-bonded core enhances its solubility in organic
solvents but also promotes association among the fibers,
through van der Waals forces, and eventual gel formation.
One effective class of organogelators exploits bis-urea deriv-
atives to form a central, hydrogen-bonded stack to which long
chain alkyl groups are attached. We[3] and others have shown
that bis-ureas such as 1 are able to gel a variety of nonpolar
organic solvents (including supercritical carbon dioxide)[3d] at
concentrations less than 4 wt%. Recent crystal structures of
these derivatives[3b,c] have confirmed the importance of
Received: April 17, 2000 [Z15003]
[1] Reviews of dendrimers: a) A. W. Bosman, H. M. Janssen, E. W.
Meijer, Chem. Rev. 1999, 99, 1665 ± 1688; b) G. Newkome, E. He,
C. N. Moorefield, Chem. Rev. 1999, 99, 1689 ± 1746; c) M. Fischer, F.
Vögtle, Angew. Chem. 1999, 111, 934 ± 955; Angew. Chem. Int. Ed.
Â
1999, 38, 884 ± 905; d) J. M. J. Frechet, C. J. Hawker, I. Gitsov, J. W.
Leon, J. Macromol. Sci. Pure Appl. Chem. A 1996, 33, 1399 ± 1425;
e) D. A. Tomalia, H. D. Durst, Top. Curr. Chem. 1993, 165, 193 ± 313.
[2] For example: a) A. W. Kleij, R. A. Gossage, J. T. B. H. Jastrzebski, J.
Boersma, G. van Koten, Angew. Chem. 2000, 112, 179 ± 182; Angew.
Chem. Int. Ed. 2000, 39, 176 ± 178; b) M. T. Reetz, G. Lohmer, R.
Schwickardi, Angew. Chem. 1997, 109, 1559 ± 1562; Angew. Chem. Int.
Ed. Engl. 1997, 36, 1526 ± 1529; c) J. W. J. Knapen, A. W. van der
Made, J. C. De Wilde, P. W. M. N. van Leeuwen, P. Wijkens, D. M.
Grove, G. van Koten, Nature 1994, 372, 659 ± 663.
[3] C. Schlenk, H. Frey, Top. Curr. Chem. 2000, 210, 69 ± 129.
[4] a) N. J. Hovestad, E. B. Eggeling, H. J. Heidbüchel, J. T. B. H. Jastr-
zebski, U. Kragl, W. Keim, D. Vogt, G. van Koten, Angew. Chem. 1999,
111, 1763 ± 1765; Angew. Chem. Int. Ed. 1999, 38, 1655 ± 1658; b) N.
Brinkmann, D. Giebel, G. Lohmer, M. T. Reetz, U. Kragl, J. Catal.
1999, 183, 163 ± 168; c) G. Giffels, J. Beliczey, M. Felder, U. Kragl,
Tetrahedron: Asymmetry 1998, 9, 691 ± 696.
[5] a) Y. H. Kim, J. Polym. Sci. Polym. Chem. Ed. 1998, 36, 1685 ± 1698;
b) A. Sunder, R. Hanselmann, H. Frey, R. Mülhaupt, Macromolecules
1999, 32, 4240 ± 4246; c) A. Sunder, J. Heinemann, H. Frey, Chem. Eur.
J. 2000, 6, 2499 ± 2506.
[6] a) M. P. H. Rietveld, D. M. Grove, G. van Koten, New J. Chem. 1997,
21, 751 ± 771; b) G. van Koten, Pure Appl. Chem. 1989, 61, 1681 ± 1693.
[7] L. van de Kuil, J. Luitjes, D. M. Grove, J. W. Zwikker, J. M. G.
van der Linden, A. M. Roelofsen, L. W. Jenneskens, W. Drenth, G.
van Koten, Organometallics 1994, 13, 468 ± 477.
[*] Dr. A. D. Hamilton, L. A. Estroff
Department of Chemistry
Yale University
P.O. Box 208107, New Haven, CT 06520-8107 (USA)
Fax : (1)203-432-3221
[**] We thank the National Science Foundation (CHE9817240) for
financial support of this work and Dr. James Eckert (Department of
Geology, Yale University) for assistance with the electron microscopy.
[8] a) A. W. Kleij, H. Klein, J. T. B. H. Jastrzebski, W. J. J. Smeets, A. L.
Spek, G. van Koten, Organometallics 1999, 18, 268 ± 276; b) A. W.
Â
We also thank R. E. Melendez for compound 1.
Angew. Chem. Int. Ed. 2000, 39, No. 19
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3919-3447 $ 17.50+.50/0
3447