214
P. Coutrot et al. / Journal of Organometallic Chemistry 586 (1999) 208–217
acid was added up to pH 2.5. Then, the mixture was
stirred for the time indicated in Table 2, according to
the nature of the enephosphoramide 7. The pH of the
aqueous layer was readjusted every hour to its initial
value by addition of a 2 N aqueous solution of H2SO4.
The course of the reaction was monitored by IR. Once
the IR aldehydic absorption stabilized, the aqueous
layer was extracted with Et2O (3×15 ml). The ether
layer was dried over MgSO4 and the solvent was re-
moved under reduced pressure. The residue was chro-
matographed on a silica gel column (1:1 Et2O–hexane)
to give the aldehyde 9 as a yellow clear oil.
4.3.3. 3-phenyl-4-(2,2-dimethyl-1,3-dioxolan-4-yl)buta-
nal 9c
Rf: 0.72 (1:1 EtOAc–Ep). IR: 2720 (CHO), 1720
(CꢁO), 1380, 1370 (CH3). First diastereomer (77%).
1H-NMR (400 MHz, CDCl3), l: 9.59 (H1, t, 1H,
3J(H1ꢀH2)=2 Hz), 7.50–7.10 (C6H5, m, 5H), 3.94 (H6,
dd, 1H, 2J(H6ꢀH6%)=8 Hz, 3J(H6ꢀH5)=6 Hz), 3.84
(H5, q, 1H, 3J(H6ꢀH5)=3J(H6%ꢀH5)=3J(H5ꢀH4)=
3J(H5ꢀH4%)=6 Hz), 3.80–3.72 (H3, m, 1H), 3.66 (H6%,
2
3
dd, 1H, J(H6%ꢀH6)=8 Hz, J(H6%ꢀH5)=6 Hz), 2.80–
2.63 (H2, H2%, m, 2H), 1.99 (H4, ddd, 1H, J(H4ꢀH4%)=
2
13 Hz, 3J(H4ꢀH5)=6 Hz, 3J(H4ꢀH3)=8.5 Hz),
1.80–1.64 (H4%, m, 1H), 1.31 (CH3, s, 3H), 1.21 (CH3, s,
3H). 13C-NMR (62 MHz, CDCl3), l: C1 201.5; C6H5
142.8, 128.8, 127.5, 127.2; C(CH3)2 108.6; C5 73.9; C6
69.3; C2, C4 50.5, 40.8; C3 37.2; (CH3)2ꢀC 27.0, 25.6.
Second diastereomer (23%). 1H-NMR (400 MHz,
4.3.1. 4-(2,2-dimethyl-1,3-dioxolan-4-yl)butanal 9a
Rf: 0.68 (1:1 ethyl acetate–hexane). IR: 2720 (CHO),
1
1720 (CꢁO), 1384, 1375 (CH3). H-NMR (400 MHz,
3
CDCl3), l: 9,71 (H1, t, 1H, J(H1ꢀH2)=1.5 Hz), 4.20–
CDCl3) l: 9.58 (H1, t, 1H, J(H1ꢀH2)=1.5 Hz), 7.50–
3
4.00 (H6, H5, m, 2 H), 3.45 (H6%, dd with the appearance
7.10 (C6H5, m, 5H), 3.50 (H6, dd, 1H, J(H6ꢀH6%)=
2
3
of a triplet, 1H, J(H5ꢀH6)=2J(H6%ꢀH6)=7 Hz), 2.43
3J(H6ꢀH5)=7.5 Hz), 3.42–3.32 (H3, m, 1H), 3.24 (H6%,
3
3
(H2, dt, 2H, J(H2ꢀH3)=7 Hz, J(H2ꢀH1)=1.5 Hz),
1.78–1.45 (H3, H4, m, 4H), 1.38 (CH3, s, 3H), 1.32
(CH3, s, 3H). 13C-NMR (62 MHz, CDCl3): C1 201.9;
C(CH3)2 108.7; C5 75.5; C6 69.1; C2, C4 43.5, 32.8; CH3:
26.8, 25.5; C3 18.3. Anal. Calc. for C9H16O3: C% 62.77;
H% 9.36. Found: C% 62.50; H% 9.40.
2
dd, 1H, J(H6%ꢀH6)=3J(H6%ꢀH5)=7.5 Hz), 3.20 (H5, q,
1H,
3J(H5ꢀH6%)=3J(H5ꢀH6%)=3J(H5ꢀH4)=3J(H5ꢀ
H4%)=7.5 Hz), 2.80–2.63 (H2, H2%, m, 2H), 1.87 (H4,
ddd, 1H, Hz,
2J(H4ꢀH4%)=13
3J(H4ꢀH5)=
3J(H4ꢀH3)=8 Hz) 1.80–1.64 (H4%, m, 1H), 1.33 (CH3,
s, 3H), 1.21 (CH3, s, 3H). 13C-NMR (62 MHz, CDCl3),
l: C1 201.45; C6H5 142.9, 128.7, 127.5, 126.9; C(CH3)2
108.7; C5 73.4; C6 69.2; C2, C4 49.9, 40.1; C3 36.6;
(CH3)2ꢀC 26.9, 25.6. Anal. Calc. for C15H20O3: C%
72.55; H% 8.12. Found: C% 72.63; H% 7.98.
4.3.2. 3-methyl-4-(2,2-dimethyl-1,3-dioxolan-4-yl)buta-
nal 9b
Rf: 0.79 (1:1 EtOAc–Ep). IR: 2720 (CHO), 1720
(CꢁO), 1384, 1380 (CH3). First diastereomer (70%).
1H-NMR (400 MHz, CDCl3), l: 9.87 (H1, t, 1H,
3J(H1ꢀH2)=2 Hz), 4.12–4.02 (H6, m, 1H), 3.98 (H5, m,
1H), 3.43 (H6%, dd, 1H, 2J(H6%ꢀH6)=2J(H6ꢀH5)=7.5
Hz), 2.45 (H2, ddd, 1H, 2J(H2ꢀH2%)=16.0 Hz,
4.3.4. 2-methyl-4-(2,2-dimethyl-1,3-dioxolan-4-yl)buta-
nal 9d
Rf: 0.71 (1:1 EtOAc–Ep). IR: 2720 (CHO), 1720
(CꢁO), 1384, 1370 (CH3). First diastereomer (60%).
1H-NMR (250 MHz, CDCl3), l: 9.63 (H1, d, 1H,
3J(H1ꢀH2)=2 Hz), 4.15–4.10 (H6, m, 2H), 4.10–4.00
(H5, m, 1H), 3.52 (H6%, m, 1H), 2.30 (H2, m, 1H),
2.00–1.45 (H3, H4, m, 4H), 1.40 (CH3ꢀC, s, 3H), 1.35
(CH3ꢀC, s, 3H), 1.12 (CH3ꢀCH2, d, 3H,
3J(CH3ꢀCH2)=7 Hz). Second diastereomer (40%), l:
3
3J(H2ꢀH3)=5.5 Hz, J(H2ꢀH1)=2 Hz), 2.21 (H2%, ddd,
1H, 2J(H2%ꢀH2)=16.0 Hz, 3J(H2%ꢀH3)=7.5 Hz,
3J(H2%ꢀH1)=2Hz), 2.28–2.10 (H3, m, 1H), 1.55 (H4,
ddd, 2H, 2J(H4ꢀH4%)=14.0 Hz, 3J(H4ꢀH5)=7.5 Hz,
2
3J(H4ꢀH3)=6.5 Hz, 1.43 (H4%, ddd, 1H, J(H4%ꢀH4)=
14.0 Hz, 3J(H4%ꢀH5)=7.5 Hz, 3J(H4%ꢀH3)=6.5 Hz),
1,32 (CH3ꢀC, s, 3H), 1,27 (CH3ꢀC, s, 3H), 0.96
3
9.62 (H1, d, 1H, J(H1ꢀH2)=2 Hz), 4.15–4.10 (H6, m,
3
(CH3ꢀCH3, d, 3H, J(CH3ꢀCH3)=6.5 Hz). 13C-NMR
1H), 4.10–4.00 (H5, m, 1H), 3.63 (H6%, m, 1H), 2.30
(H2, m, 1H), 2.00–1.45 (H3, H4, m, 4H), 1.40 (CH3ꢀC,
s, 3H), 1.35 (CH3ꢀC, s, 3H), 1.125 (CH3ꢀCH2, d, 3H,
3J(CH3ꢀCH2)=7 Hz). Anal. Calc. for C10H18O3: C%
64.49; H% 9.74. Found: C% 64.20; H% 9.58.
(62 MHz, CDCl3), l: C1 201.6; C(CH3)2 96.2; C5 73.9;
C6 69.7; C2, C4 50.6, 40.3; (CH3)2ꢀC 27.1, 25.8;
1
CH3ꢀCH 20.6. Second diastereomer (30%). H-NMR
3
(400 MHz, CDCl3), l: 9.87 (H1, t, 1H, J(H1ꢀH2)=1.5
Hz), 4.20–4.08 (H6, H5, m, 2H), 3.62–3.53 (H6%, m,
1H), 2.45 (H2, dd, 2H, 3J(H2ꢀH1)=1.5 Hz,
3J(H2ꢀH3)=7 Hz), 2.19–1.55 (H3, H4, m, 3H), 1.40
(CH3ꢀC, s, 3H), 1.30 (CH3ꢀC, s, 3H), 0.97 (CH3ꢀCH3,
4.4. General procedure for the preparation of acids 10
With silver nitrate: silver nitrate powder (3.954 g, 23
mmol) was added slowly at 5°C to a cold stirred
solution of sodium hydroxide (1.86 g, 46 mmol) in
distilled water (14 ml). After stirring for 10 min, alde-
hyde 9 (11.63 mmol) was added dropwise with a sy-
ringe. The mixture was stirred for 1 h and filtered. The
d,
3H,
3J(CH3ꢀCH3)=7Hz).
13C-NMR
(62
MHz,CDCl3), l: C1 201.55; C(CH3)2 108.9; C5 74.1; C6
69.8; C2, C4 50.6, 40.8; (CH3)2ꢀC 27.1, 25.6; CH3ꢀCH
20.2. Anal. Calc. for C10H18O3: C% 64.49; H% 9.74.
Found: C% 64.10; H% 9.52.