ACS Catalysis
Page 6 of 8
Collins, M. R.; Ornelas, M. A.; Ishihara, Y.; Baran, P. S. J. Am. Chem. Soc.
2014, 136, 4853-4856.
opment of the photochemical reaction. A. G., D. M., A. O.-M., F.
C. and L. M. performed the experiments. E. M. and L. S. pre-
pared the Ir(III) complexes used for the studies. F. M. and N. A.
designed and performed the photophysical measurements. P.
G. C. conceived and directed the project and wrote the manu-
script with contributions from all the authors.
1
2
3
4
5
6
7
8
(9)
(a) Flegeau, E. F.; Harrison, J. M.; Willis, M. C. Synlett, 2016,
27, 101-105; (b) Emmett, E. J.; Willis, M. C. Asian J. Org. Chem. 2015, 4,
602-611; (c) Deeming, A. S.; Russell, C. J.; Willis, M. C. Angew. Chem.
Int. Ed. 2015, 54, 1168-1171; (d) Deeming, A. S.; Emmett, E. J.; Rich-
ards-Taylor, C. S.; Willis, M. C. Synthesis, 2014, 46, 2701-2710; (e)
Deeming, A. S.; Russell, C. J.; Hennessy, A. J.; Willis, M. C. Org. Lett.
2014, 16, 150-153; (f) Richards-Taylor, C. S.; Blake-more, D. C.; Willis,
M. C. Chem. Sci. 2014, 5, 222-228.
(10) Minisci, F.; Fontana, F.; Vismara, E. J. Heterocycl. Chem.
1990, 27, 79-96.
(11) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765-825.
(12) Meesin, J.; Katrun, P.; Pareseecharoen, C.; Pohmakotr, M.;
Reutrakul, V.; Soorukram, D.; Kuhakarn, C J. Org. Chem. 2016, 81,
2744-2752.
(13) Li, Z., Cui, Z.; Liu, Z.-Q. Org. Lett. 2013, 15, 406-409.
(14) (a) Meyer, A. U.; Jäger, S.; Hari, D. P.; König, B. Adv. Synth.
Catal. 2015, 357, 2050-2054; (b) Meyer, A. U.; Lau, V. W. H.; König, B. ;
Lotsch, B. V. Eur. J. Org. Chem. 2017, 2179-2185; (c)Hering, T.; Uwe
Meyer, A.; König, B. J. Org. Chem. 2016, 81, 6927-6936, and ref. there-
in.
(15) Giese, B.; Gonzalez-Gomez, J. A.; Witzel, T. Angew. Chem. Int.
Ed. Engl. 1984, 23, 69-70. For a quite recent example, see: Qin T.; Ma-
lins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.;
Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Angew. Chem.
2017, doi: 10.1002/anie.201705107.
(16) Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Commun.
2013, 49, 7854-7856.
(17) Capaldo, L.; Buzzetti, L.; Merli, D.; Fagnoni, M.; Ravelli, D. J.
Org. Chem. 2016, 81, 7102-7109.
(18) Silvi, M.; Verrier, C.; Rey, R. Y.; Buzzetti, L.; Melchiorre, P.
Nature Chem. 2017, DOI: 10.1038/NCHEM.2748.
(19) Zhou, R.; Liu, H.; Tao, H.; Yu, Y.; Wu, J. Chem. Sci. 2017, 8,
4654-4659.
(20) (a) Gualandi, A.; Marchini, M.; Mengozzi, L.; Natali, M.; Luca-
rini, M.; Ceroni, P.; Cozzi, P. G. ACS Catal. 2015, 5, 5927-5931; (b)
Magagnano, G.; Gualandi, A.; Marchini, M.; Mengozzi, L.; Ceroni, P.;
Cozzi P. G Chem. Commun. 2017, 53, 1591-1594; (c) Gualandi, A.;
Matteucci, E.; Monti, F.; Armaroli, N.; Sambri, L.; Cozzi, P. G. Chem. Sci.
2017, 8, 1613-1620.
Funding Sources
Bologna University, Fondazione Del Monte, SLAMM project
are acknowledged for financial support to A G. and L. M. N.A.
and F.M. thank the CNR for financial support through the pro-
jects PHEEL, N-CHEM, and bilateral CNR-CONICET.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI. Details of all synthetic, elec-
trochemical, photophysical experiments.
ACKNOWLEDGMENT
A. O.-M. thanks the Spanish MINECO for a fellowship.
Notes
The authors declare no competing financial interest.
ABBREVIATIONS
Zinc trifluoromethanesulfinate (TFMS), zinc difluoro-
methanesulfinate (DFMS), zinc trifluoroethanesulfinate
(TFES) and zinc isopropyl-sulfinate (IPS), tetrabutylammoni-
um decatungstate (TBADT), trimethylsilyl (TMS), saturated
calomel electrode (SCE), acetonitrile (MeCN), dimethylsufox-
ide (DMSO), 2,2,6,6-tetramethylpiperidin-1-yl-oxyl (TEMPO),
REFERENCES
(1)
(a) Borsche, W.; Lange, W. Ber. Dtsch. Chem. Ges. 1906,
39, 2346-2356; (b) Smiles, S.; Le Rossignol, R. J. Chem. Soc. Trans.
1908, 93, 745-762.
(21) Chang, P.; Yeh, P.; Chen, H. G.; Knochel P. Org. Synth. 1992,
70, 195-202.
(2)
A. Org. Biomol. Chem. 2014, 12, 9743-9759.
(3) O'Hara, F.; Baxter, R.D.; O'Brien, A.G.; Collins, M.R.; Dixon,
For a review, see: Aziz, J.; Messaoudi, S.; Alami, M.; Hamze,
(22) Fukuzumi, S.; Kotani,H.; Ohkubo,K.; Ogo, S.; V. Tkachenko,
N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600-1601.
(23) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R.
A.; Maliaras, G. G.; Bernhard, S. Chem. Mat. 2005, 17, 5712-5719.
(24) 1H-NMR signal of sodium sulfinates stored in air at r.t. were
showing the presence of other species after few hours. Also, storing
the sample at -20 °C the decomposition was only delayed. See SI for an
image.
J.A.; Fujiwara, Y.; Ishihara, Y.; Baran, P. S., Nature Protocols 2013, 8,
1042-1047.
(4)
2017, 82, 1224-1230.
(5)
(a) For hexanoate; Ered = + 1.16 vs SCE; see: Galicia, M.;
Wu, W. Q.; Yi, S. J; Yu, Y.; Huang, W.; Jiang, H. F. J. Org. Chem.
1/2
Gonzales, F. J. J. Electrochemical Soc. 2002, 149, D.46-D50. (b) For so-
dium alkyl sulfinates; Ered = +0.45 V vs SCE; see: Uwe Meyer, A.;
1/2
(25) For coordination of zinc sulfonates with a nitrogen contain-
ing heterocycle, see: Lindner, E.; Frembs, D. W. R.; Krug, D. Chem. Ber.
1975, 108, 291-300.
Strakov, K.; Slanina,T.; König, B. Chem. Eur. J. 2016, 22, 8694-8699.
(6)
Chatgilialoglu, C.; Lunazzi, L.; Ingold, K. U. J. Org. Chem.
1983,48, 3588-3589.
(26) Mayr has measured the electrophilicity of Michael accep-
tors in a series papers; see: (a) Chen, Q.; Mayer, P.; Mayr, H. Angew.
Chem. Int. Ed. 2016, 55, 12664; (b) Allgäuer, D. S.; Mayr, H. Eur. J. Org.
Chem. 2014, 2956; (c) Asahara, H.; Mayr, H. Chem. Asian J. 2012, 7,
1401 (d) Zenz, I.; Mayr, H. J. Org. Chem. 2011, 76, 9370; (e) Kaumanns,
O.; Lucius, R.; Mayr, H. Chem. Eur. J. 2008, 14, 9675-9682. Although
these kinetic investigations, a general method to predict the corre-
sponding reactivities and selectivities of Michael acceptors is still
missing. However, the relative reactivities of different families of Mi-
chael acceptors can be obtained by the thermodynamics of the rate-
determining step, as was recently found by Mayr: H. Mayr, personal
communication
(27) For the reduction potential and LUMO energy of a series of
α,β-unsaturated compounds, see: Moraleda, D.; El Abed, D.; Pellissier,
H.; Santelli, M. THEOCHEM 2006, 760, 113-119. Recently, the compu-
tational study of the addition of benzyl radical, generated through
photoredox conditions was reported: see Tutkovsky, B.; Meggers, E.;
Wiest, O. J. Am. Chem. Soc. 2017; DOI: 10.1021/jacs.7b01786. The
LUMO of the electron deficient alkene substrate and the SOMO of the
benzyl radical acting as a nucleophile are the orbitals involved in the
(7)
(a) A. Studer, D. P. Curran Angew. Chem. Int. Ed. 2016, 55,
58-102; (b) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem.
Soc. 2016, 138, 12692-12714.
(8)
Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc.
2016, 138, 12692-12714. For other radical reactions developed by
Baran group, see: a) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple,
I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. PNAS, 2011, 108, 14411-
14415; (b) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.;
Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem.
Soc. 2012, 134, 1494-1497; (c) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.;
Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herlé, B.;
Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95-
99; (d) Zhou, Q.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.; Sha-
bat, D.; Baran, P. S. Angew. Chem. Int. Ed. 2013, 52, 3949-3952; (e)
O'Hara, F.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2013, 135,
12122-12134; (f) Zhou, Q.; Gui, J.; Pan, C.-M.; Albone, E.; Cheng, X.; Suh,
E. M.; Grasso, L.; Ishihara, Y.; Baran, P. S. J. Am. Chem. Soc. 2013, 135,
12994-12997; (g) Gui, J.; Zhou, Q.; Pan, C.-M.; Yabe, Y.; Burns, A. C.;
ACS Paragon Plus Environment