Scheme 2. Retrosynthetic Analysis of the FR 901483 Core
Scheme 3. Synthesis of Dihydropyrrole 13
7 which is generated by condensation of a L-tyrosine-derived
amine and a cyclohexanone derivative. Lithiated alkoxyal-
lenes 6 have already been successfully employed as func-
tionalized C3 building blocks in stereocontrolled syntheses
of natural products containing functionalized pyrrolidine
rings5 as well as for the preparation of other heterocycles.6
Amino alcohol 8 was smoothly prepared from L-tyrosine
by four routine steps2d and protected as silyl ether to furnish
primary amine 9 in excellent overall yield (Scheme 3).
Ketone 10 containing a thioketal moiety7 was also accessible
according to a known method.8 Under appropriate conditions,
amine 9 and ketone 10 gave ketimine 11 (ca. 85% conver-
sion). Because of its instability toward chromatography,
crude 11 was directly combined with lithiated methoxyallene
(generated in situ from methoxyallene with n-butyllithium),
which provided allenylamine 12 in high efficiacy. Attempts
to purify 12 failed, and therefore, the crude allenylamine was
immediately cyclized in the presence of silver nitrate9 and
K2CO3 in MeCN to afford the desired dihydropyrrole
derivative 13 in 79% overall yield (starting from 9). Our
approach to functionalized spiropyrrolidine derivatives such
as 13 via lithiated alkoxyallenes is therefore very efficient,
and it is potentially very flexible concerning the ketimine
component.10
The thioketal moiety proved to be sufficiently stable during
the formation of spiro compound 13, and after trying a
number of methods, we were able to selectively cleave this
ketal with bis(trifluoroacetate) iodobenzene under optimized
conditions according to a procedure by Stork et al. (Scheme
4).11 Deprotection with TBAF provided a keto alcohol in
good yield which upon oxidation with SO3-pyridine and
triethylamine in DMSO12 furnished the required keto alde-
hyde 14. Alternative methods such as Swern oxidation, DMP,
TEMPO, or TPAP/NMO only resulted in decomposition of
the starting material. With the sequences depicted in Schemes
3 and 4, the crucial aldol precursor 14 was obtained in six
steps and 38% overall yield starting from amine 9 (starting
from L-tyrosine: 10 steps and 24% overall yield).
(4) (a) Wardrop, D. J.; Zhang, W. Org. Lett. 2001, 3, 2353-2356. (b)
Suzuki, H.; Yamazaki, N.; Kibayashi, C. Tetrahedron Lett. 2001, 42, 3013-
3015. (c) Bonjoch, J.; Diaba, F.; Puigbo, G.; Peidro, E.; Sole, D. Tetrahedron
Lett. 2003, 46, 8387-8390. (d) Brummond, K. M.; Hong, S.-p. J. Org.
Chem. 2005, 70, 907-916. (e) Kropf, J. E.; Meigh, I. C.; Bebbington, W.
P.; Weinreb, S. M. J. Org. Chem. 2006, 71, 2046-2055. (f) Simila, S. T.
M.; Reichelt, A.; Martin, S. F. Tetrahedron Lett. 2006, 47, 2933-2936.
(5) (a) Pulz, R.; Al-Harrasi, A.; Reissig, H.-U. Org. Lett. 2002, 4, 2353-
2355. (b) Flo¨gel, O.; Okala Amombo, M. G.; Reissig, H.-U.; Zahn, G.;
Bru¨dgam, I.; Hartl, H. Chem.sEur. J. 2003, 9, 1405-1415. (c) Kaden, S.;
Brockmann, M.; Reissig, H.-U. HelV. Chim. Acta 2005, 88, 1826-1838.
(d) Hausherr, A. Dissertation; Freie Universita¨t Berlin, 2001. (e) Chowdhury,
M. A.; Reissig, H.-U. Synlett 2006, 2383-2386. (f) For a related approach
to substituted pyrrolidines by addition of lithiated methoxyallene to
hydrazones of aldehydes (including SAMP and RAMP hydrazones), see:
Breuil-Desvergnes, V.; Gore´, J. Tetrahedron 2001, 57, 1939-1950. Breuil-
Desvergnes, V.; Gore´, J. Tetrahedron 2001, 57, 1951-1960.
(6) Selected references: (a) Hormuth, S.; Reissig, H.-U. J. Org. Chem.
1994, 59, 67-73. (b) Okala Amombo, M. G.; Hausherr, A.; Reissig, H.-U.
Synlett 1999, 1871-1874. (c) Helms, M.; Schade, W.; Pulz, R.; Watanabe,
T.; Al-Harrasi, A.; Fisˇera, L.; Hlobilova´, I.; Zahn, G.; Reissig, H.-U. Eur.
J. Org. Chem. 2005, 1003-1019. (d) Al-Harrasi, A.; Reissig, H.-U. Angew.
Chem. 2005, 117, 6383-6387; Angew. Chem., Int. Ed. 2005, 44, 6227-
6231. For reviews, see: (e) Zimmer, R.; Reissig, H.-U. Donor-Substituted
Allenes. In Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.;
Wiley-VCH: Weinheim, 2004; Vol. 1, pp 425-492. (f) Zimmer, R.
Synthesis 1993, 165-178. (g) Zimmer, R.; Khan, F. A. J. Prakt. Chem.
1996, 338, 92-94.
(9) (a) Olsson, L.-I.; Claesson, A. Synthesis 1979, 743-745. (b) Marshall,
J. A.; Bartley, G. S. J. Org. Chem. 1994, 59, 7169-7171. (c) Flo¨gel, O.;
Reissig, H.-U. Eur. J. Org. Chem. 2004, 2797-2804.
(10) For selected recently published methods to generate spiropyrrolidine
derivatives, see: (a) El Bialy, S. A. A.; Braun, H.; Tietze, L. F. Synthesis
2004, 2249-2262. (b) Planas, L.; Pe´rard-Viret, J.; Royer, J. J. Org. Chem.
2004, 69, 3087-3092. (c) Sun, P.; Sun, C.; Weinreb, S. M. J. Org. Chem.
2002, 67, 4337-4345.
(7) Other functional groups in this position such as simple ketals or
trialkylsiloxy groups proved not to be easily compatible with the subsequent
steps of our approach. Kaden, S. Dissertation; Freie Universita¨t Berlin, 2006.
(8) Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H. Synlett 2001, 1641-
1643.
(11) Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 287-290.
(12) Parikh, J. R.; Doering, W. v. E. J. Am. Chem. Soc. 1967, 89, 5505-
5507.
4764
Org. Lett., Vol. 8, No. 21, 2006