Organic Letters
Letter
(8) (a) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465−7478.
(b) Zhang, W.; Wang, F.; Hu, J. Org. Lett. 2009, 11, 2109−2112.
(c) Zafrani, Y.; Sod-Moriah, G.; Segall, Y. Tetrahedron 2009, 65, 5278−
5283. (d) Wang, F.; Huang, W.; Hu, J. Chin. J. Chem. 2011, 29, 2717−
2721. (e) Yang, J.; Jiang, M.; Jin, Y.; Yang, H.; Fu, H. Org. Lett. 2017, 19,
2758−2761. (f) Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Chem. - Eur.
see: (g) Zhu, D.; Gu, Y.; Lu, L.; Shen, Q. J. Am. Chem. Soc. 2015, 137,
10547−10553. (h) Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.;
Shibata, N. Org. Lett. 2017, 19, 934−937. (i) Prakash, G. K. S.;
Krishnamoorthy, S.; Kar, S.; Olah, G. A. J. Fluorine Chem. 2015, 180,
186−191. (j) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Ni, C.; Olah, G. A. J.
Fluorine Chem. 2011, 132, 792−798.
and the phosphonium reagent is readily prepared in large scale.
Mechanistic studies reveal that the process is radical in nature.
The introduced method is complementary to reported thiol
difluoromethylations that proceed via the difluorocarbene
intermediate. Clearly, the radical process offers advantages over
the carbene routes in terms of functional group tolerance. This
letter shows that phosphonium salts can engage in SRN1-type
reactions, and considering the diverse SRN1 chemistry, such salts
should have a future as precursors in radical chemistry.
ASSOCIATED CONTENT
* Supporting Information
■
S
(9) Deng, X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Chem. Commun. 2015,
51, 8805−8808.
The Supporting Information is available free of charge on the
(10) Hua, M.-Q.; Wang, W.; Liu, W.-H.; Wang, T.; Zhang, Q.; Huang,
Y.; Zhu, W.-H. J. Fluorine Chem. 2016, 181, 22−29.
(11) Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.; Liang, S. H. Angew.
Chem., Int. Ed. 2015, 54, 13236−13240; Angew. Chem. 2015, 127,
13434−13438.
1
Experimental procedures; characterization data; H, 13C,
19F, and 31P spectra; cyclovoltammetry measurements
(12) (a) Lin, Q.-Y.; Ran, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18,
2419−2422. (b) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L. Angew.
Chem., Int. Ed. 2016, 55, 1479−1483; Angew. Chem. 2016, 128, 1501−
1505. (c) Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2016,
81, 7001−7007. (d) Orsi, D. L.; Easley, B. J.; Lick, A. M.; Altman, R. A.
Org. Lett. 2017, 19, 1570−1573.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(13) (a) Bardagi, J. I.; Rossi, R. A. Encyclopedia of Radicals in Chemistry,
Biology and Materials; Chatgilialoglu, C., Studer, A., Eds.; Wiley-Verlag:
Chichester, UK, 2012; pp 333−364. (b) Rossi, R. A.; Pierini, A. B.;
Penenory, A. B. Chem. Rev. 2003, 103, 71−168. (c) Zhang, N.; Samanta,
S. R.; Rosen, B. M.; Percec, V. Chem. Rev. 2014, 114, 5848−5958.
(14) For recent examples on thiol SRN1 chemistry, see: (a) Heine, N.
B.; Studer, A. Macromol. Rapid Commun. 2016, 37, 1494−1498.
(b) Janhsen, B.; Daniliuc, C. G.; Studer, A. Chem. Sci. 2017, 8, 3547−
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Deutsche Forschungsgemeinschaft (DFG) for
financial support, and Dr. Dirk Leifert (WWU Munster) for
providing isocyanide 8.
́ ̀
3553. (c) For a review on thiyl radical chemistry, see: Denes, F.;
̈
Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587−2693.
(15) (a) Rico, I.; Cantacuzene, D.; Wakselman, C. J. Org. Chem. 1983,
48, 1979−1982. (b) Wakselman, C.; Tordeux, M. J. Org. Chem. 1985, 50,
4047−4051.
REFERENCES
■
(16) Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun.
2013, 49, 7513−7515.
(17) Wolfe, J. F.; Carver, D. R. Org. Prep. Proced. Int. 1978, 10, 225−
253.
(1) For some reviews, see: (a) Zhang, C. Adv. Synth. Catal. 2017, 359,
372−383. (b) Charpentier, J.; Fruh, N.; Togni, A. Chem. Rev. 2015, 115,
̈
650−682. (c) Barata-Vallejo, S.; Lantano, B.; Postigo, A. Chem. - Eur. J.
̃
2014, 20, 16806−16829. (d) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015,
44, 3505−3521. (e) Lu, Y.; Liu, C.; Chen, Q.-Y. Curr. Org. Chem. 2015,
19, 1638−1650. (f) Hu, J. J. Fluorine Chem. 2009, 130, 1130−1139.
(g) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Coord.
Chem. Rev. 2014, 261, 28−72. (h) Studer, A. Angew. Chem., Int. Ed. 2012,
51, 8950−8958; Angew. Chem. 2012, 124, 9082−9090.
(18) Deng, Z.; Lin, J.-H.; Xiao, J.-C. Nat. Commun. 2016, 7, 10337.
(19) Persson, B.; Nygard, B. J. Electroanal. Chem. Interfacial
Electrochem. 1974, 56, 373−383.
(20) Amatore, C.; Oturan, M. A.; Pinson, J.; Saveant, J. M.; Thiebault,
A. J. Am. Chem. Soc. 1985, 107, 3451−3459.
(21) Studer, A.; Curran, D. P. Nat. Chem. 2014, 6, 765−773.
(2) For some reviews, see: (a) Hagmann, W. K. J. Med. Chem. 2008, 51,
4359−4369. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V.
Chem. Soc. Rev. 2008, 37, 320−330. (c) Wang, J.; San
́
chez-Rosello,
́
M.;
Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V.
̃
A.; Liu, H. Chem. Rev. 2014, 114, 2432−2506. (d) Berger, R.; Resnati,
G.; Metrangolo, P.; Weber, E.; Hulliger, J. Chem. Soc. Rev. 2011, 40,
3496−3508.
(3) Eisenberger, P.; Gischig, S.; Togni, A. Chem. - Eur. J. 2006, 12,
2579−2586.
(4) (a) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993, 115, 2156−
2164. (b) Umemoto, T. Chem. Rev. 1996, 96, 1757−1778.
(5) (a) Tordeux, M.; Langlois, B.; Wakselman, C. J. Org. Chem. 1989,
54, 2452−2453. (b) Zhang, C. Adv. Synth. Catal. 2014, 356, 2895−2906.
(6) (a) Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25,
2195−2198. (b) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97,
757−786.
(7) (a) Ma, J. J.; Yi, W.-B.; Lu, G.-P.; Cai, C. Catal. Sci. Technol. 2016, 6,
417−421. (b) Ma, J.; Liu, Q.; Lu, G.; Yi, W. J. Fluorine Chem. 2017, 193,
113−117. (c) Zhu, D.; Shao, X.; Hong, X.; Lu, L.; Shen, Q. Angew.
Chem., Int. Ed. 2016, 55, 15807−15811; Angew. Chem. 2016, 128,
16039−16043.
D
Org. Lett. XXXX, XXX, XXX−XXX