silica gel and the solvent evaporated. The resulting oil is
distilled twice in a Kugelrohr yielding 1.78 g (7.66 mmol, 38%)
of a clear colorless oil: bp 105 °C (5·10−3 Torr). 1H NMR
References
1
(a) S. J. Higgins, Chem. Soc. Rev., 1997, 26, 247; (b) M. Leclerc
and K. Faid, Adv. Mater., 1997, 9, 1087; (c) T. M. Swager, Acc.
Chem. Res., 1998, 31, 201.
(CDCl ): d (ppm) 6.20 (s, 2 H, 2-H, 5-H), 4.11–4.08 (m, 4 H,
3
1∞-H), 3.73–3.69 (m, 4 H, 2∞-H), 3.39 (s, 6 H, 4∞-H). 13C NMR
2
3
F. Garnier, Angew. Chem. 1989, 101, 529.
(CDCl ): d (ppm) 147.1, 97.9 (C-2 to C-5), 70.7, 69.6, 59.0
(a) M. R. Bryce, A. Chissel, P. Kathirgamanthan, D. Parker and
N. R. M. Smith, J. Chem. Soc., Chem. Commun., 1987, 466; (b)
J. Roncali, R. Garreau and M. Lemaire, J. Electroanal. Chem.,
1990, 278, 373; (c) J. Roncali, L. H. Shi and F. Garnier, J. Phys.
Chem., 1991, 95, 8983; (d) H. S. Li, F. Garnier and J. Roncali,
Synth. Met., 1991, 41–43, 547; (e) L. H. Shi, F. Garnier and
J. Roncali, Solid State Commun., 1991, 77, 811; ( f ) R. D.
McCullough, S. Tristram-Nagle, S. P. Williams, R. D. Lowe and
M. Jayaraman, J. Am. Chem. Soc., 1993, 115, 4910; (g) R. D.
McCullough and S. P. Williams, J. Am. Chem. Soc., 1993, 115,
11608; (h) I. Le´vesque and M. Leclerc, J. Chem. Soc., Chem.
Commun., 1995, 2293; (i) I. Le´vesque and M. Leclerc, Chem.
Mater., 1996, 8, 2843; ( j) I. Le´vesque and M. Leclerc, Synth. Met.,
1997, 84, 203; (k) R. D. McCullough, P. C. Ewbank and R. D.
Lowe, J. Am. Chem. Soc., 1997, 119, 633.
3
(C-1∞ to C-4∞). Anal. calcd. for C H O S: C 51.71, H 6.94, S
10 16 4
13.80. Found: C 51.93, H 7.01, S 13.70%. UV (CH Cl ): l
(log e)=255 nm (3.86).
2
2
max
3,4-Bis[2-(2-methoxyethoxy)ethoxy]thiophene 15
7.11 g (15.3 mmol) 3,4-Bis[2-(2-methoxyethoxy)ethoxy]-2,5-
bis(ethoxycarbonyl)thiophene are dissolved in 80 ml ethanol
and 80 ml 5% aqueous sodium hydroxide solution are added.
After 5 h at 60 °C the solution is cooled with an ice bath and
acidified with concentrated hydrochloric acid. It is then
extracted with diethyl ether and the solvent evaporated under
reduced pressure. The remaining solid is decarboxylated at
210–220 °C for 1.5 h. The resulting black mixture is extracted
with dichloromethane and filtered through silica gel. After
evaporation of the solvent the resulting oil is distilled twice
with a Kugelrohr apparatus yielding 0.90 g (2.79 mmol, 18%)
of a slightly brownish clear oil. Bp 140 °C (5·10−3 Torr). 1H
4
(a) P. Bauerle and S. Scheib, Adv. Mater., 1993, 5, 848; (b)
¨
M. J. Marsella and T. M. Swager, J. Am. Chem. Soc., 1993, 115,
12 214; (c) Y. Miyazaki and T. Yamamoto, Chem. Lett., 1994, 41;
(d) T. M. Swager and M. J. Marsella, Adv. Mater., 1994, 6, 595;
(e) M. J. Marsella, P. J. Carroll and T. M. Swager, J. Am. Chem.
Soc., 1994, 116, 9347; ( f ) P. Bauerle and S. Scheib, Acta Polym.,
¨
1995, 46, 124; (g) M. J. Marsella, P. J. Carroll and T. M. Swager,
J. Am. Chem. Soc., 1995, 117, 9832; (h) T. Benincori, E. Brenna,
F. Sannicolo, L. Trimarco, G. Moro, D. Pitea, T. Pilati, G. Zerbi
and G. Zotti, J. Chem. Soc., Chem. Commun., 1995, 881;
(i) Y. Miyazaki and T. Yamamoto, Synth. Met., 1995, 69, 317; ( j)
T. Yamamoto, M. Omote, Y. Miyazaki, A. Kashiwazaki, B.-
L. Lee, T. Kanbara, K. Osakada, T. Inoue and K. Kubota,
Macromolecules, 1997, 30, 7158.
NMR (CDCl ): d (ppm) 6.17 (s, 2 H, 2-H, 5-H), 4.10 (t,
3
3J
=5.0 Hz, 4 H, 1∞-H), 3.81 (t, 3J
=5.0 Hz, 4 H, 2∞-
(1∞,2∞)
(2∞,1∞)
H), 3.68–3.64 (m, 4 H, 4∞-H), 3.53–3.49 (m, 4 H, 5∞-H), 3.34
(s, 6 H, 7∞-H). 13C NMR (CDCl ): d (ppm) 147.0, 97.8 (C-2
to C-5), 71.8, 70.6, 69.7, 69.4, 58.9 (C-1∞ to C-7∞). Anal. calcd.
3
for C H O S: C 52.48, H 7.55, S 10.01. Found: C 52.14, H
14 24 6
5
6
G. Rimmel and P. Bauerle, Synth. Met., in the press.
¨
7.56, S 10.08%. UV (CH Cl ): l
(log e)=255 nm (3.88).
(a) P. N. Bartlett, A. C. Benniston, L.-Y. Chung, D. M. Dawson
and P. Moore, Electrochim. Acta, 1991, 36, 1377; (b) H. K.
Youssoufi, M. Hmyene, F. Garnier and D. Delabouglise, J. Chem.
Soc., Chem. Commun., 1993, 1550; (c) H. K. Youssoufi, A. Yassar,
S. Baiteche, M. Hmyene and F. Garnier, Synth. Met., 1994, 67,
251; (d) H. K. Youssoufi, M. Hmyene, A. Yassar and F. Garnier,
J. Electroanal. Chem., 1996, 406, 187.
2
2
max
Electrochemical methods
Tetrabutylammonium hexafluorophosphate, lithium perchlor-
ate, sodium perchlorate and potassium hexafluorophosphate
were recrystallized and dried in vacuo prior to use. Acetonitrile
(Chromasolv, Merck) was filtered through activated basic
alumina and saturated with oxygen-free argon. All electro-
chemical measurements were performed with a computer-
controlled EG&G PAR 273 potentiostat or a computer-con-
trolled EG&G PAR363 potentiostat. The platinum working
electrode was a platinum wire sealed in a soft glass tube with
a surface of A=0.785 mm2 and polished down to 0.5 mm
(Buehler polishing paste) prior to use in order to get reproduc-
ible surfaces. The counter electrode consisted of a platinum
wire, the reference was an Ag/AgCl secondary electrode.
General procedure for the electrosynthesis of polythiophenes:
acetonitrile–tetrabutylammonium hexafluorophosphate (0.1
M) was deoxygenated with dry argon for 15 min. The corre-
sponding monomers were characterized at a concentration of
1.10−3 mol l−1. Then the concentration was increased to the
given values and the monomers were electropolymerized by
successive scanning in the given potential range. The modified
working electrodes were subsequently rinsed with dry aceto-
nitrile, dried in air, and characterized in electrolyte free of
monomer.
7
8
9
(a) M. J. Marsella, R. J. Newland, P. J. Carroll and T. M. Swager,
J. Am. Chem. Soc., 1995, 117, 9842; (b) K. B. Crawford, M. B.
Goldfinger and T. M. Swager, J. Am. Chem. Soc., 1998, 120, 5187.
(a) S. S. Zhu, P. J. Carroll and T. M. Swager, J. Am. Chem. Soc.,
1996, 118, 8713; (b) S. S. Zhu and T. M. Swager, J. Am. Chem.
Soc., 1997, 119, 12 568.
F. Garnier, H. K. Youssoufi, P. Srivastava and A. Yassar, J. Am.
Chem. Soc., 1994, 116, 8813.
10 (a) A. Emge and P. Bauerle, Synth. Met., 1997, 84, 213; (b)
¨
P. Bauerle and A. Emge, Adv. Mater., 1998, 9, 324.
¨
11 (a) T. Livache, A. Roget, E. Dejean, C. Barthet, G. Bidan and
R. Teoule, Nucleic Acid Res., 1994, 22, 2915; (b) T. Livache,
A. Roget, E. Dejean, C. Barthet, G. Bidan and R. Teoule, Synth.
Met., 1995, 71, 2143; (c) H. Korri-Youssoufi, F. Garnier,
P. Srivastava, P. Godillot and A. Yassar, J. Am. Chem. Soc., 1997,
119, 7388.
12 A. Meyer and P. Bauerle, unpublished results.
¨
13 E. K. Wilson, Chem. Eng. News, 1998, May 25, 47.
14 (a) K. Faid and M. Leclerc, Chem. Commun., 1996, 2761; (b)
K. Faid and M. Leclerc, J. Am. Chem. Soc., 1998, 120, 5274.
15 J. Simon, M. K. Engel and C. Soulie´, New J. Chem., 1992, 16, 287.
16 P. Bauerle, F. Wurthner and S. Heid, Angew. Chem., 1990, 102,
¨
¨
414.
17 P. Bauerle, F. Wurthner, G. Gotz and F. Effenberger, Synthesis,
¨
¨
¨
1993, 1099.
18 T. Sone, K. Sato and Y. Ohba, Bull. Chem. Soc. Jpn., 1989, 62,
838.
19 (a) O. Hinsberg, Ber. Dtsch. Chem. Ges., 1910, 43, 901; (b)
O. Hinsberg, Ber. Dtsch. Chem. Ges., 1912, 45, 2413.
Acknowledgements
20 A. Ostrowicki, E. Koepp and F. Vogtle, Top. Curr. Chem., 1991,
¨
We would like to thank Degussa AG for a generous gift of
platinum and silver wires for the preparation of electrodes,
Mrs Petra Pruschek (Universitat Stuttgart) for her prepar-
ative help during her practical course, the Deutsche
Forschungsgemeinschaft (SFB 329) for financial support, and
Dr J. Opitz and Mr F. Bender, Institut fur Organische Chemie,
161, 37.
21 F. Dallacker and V. Mues, Chem. Ber., 1975, 108, 569.
22 P. Bauerle, F. Pfau, H. Schlupp, F. Wurthner, K.-U. Gaudl, M. B.
¨
¨
¨
Caro and P. Fischer, J. Chem. Soc., Perkin Trans. 2, 1993, 489.
23 G. Ritzler, F. Peter and M. J. Gross, J. Electroanal. Chem., 1981,
117, 53.
¨
24 P. Bauerle, M. Hiller, S. Scheib, M. Sokolowski and E. Umbach,
¨
Universitat Stuttgart, for elemental analysis and mass spectra.
Adv. Mater., 1996, 7, 214.
¨
J. Mater. Chem., 1999, 9, 2139–2150
2149