D
B.-q. Ni et al.
Letter
Synlett
tuted aryl alkenes, ,- substituted aryl alkenes, and ali-
phatic alkenes are tolerated well in this transformation to
give the corresponding products in moderate to high yields,
thereby providing a potential route for both academic and
industrial applications.
OH
Ph
Cl
+
S
standard conditions
TEMPO
S
S
(a)
Cl
S
S
Ph
Cl
11% yield
Cl
OH
S
N2, I2
60 °C
Ph
(b)
Cl
Ph
+
Cl
MeCN/H2O
Funding Information
trace
The authors gratefully acknowledge the National Natural Science
Foundation of China (no. 21808085), the China Postdoctoral Science
Foundation (2018M630519), and the Natural Science Foundation of
Cl
Cl
OH
Ph
air, I2
S
(c)
Cl
S
S
S
S
Ph
Ph
+
+
60 °C
dry MeCN
Cl
Jiangsu Province, China (BK20160164).
N
aturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
J
i
a
n
gsuPro
v
i
n
c
e
(B
K
2
0
1
6
0
1
6
4)C
h
i
n
a
P
ostd
o
ctoralS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
(2
0
1
8
M
6
3
0
5
1
9)Nati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
8
0
8
0
8
5)
trace
O18
H
Supporting Information
air, I2
S
Ph
(d)
Cl
60 °C
MeCN/H218O
Supporting information for this article is available online at
Cl
not detected
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
Scheme 3 Control experiments
References and Notes
On the basis of these control experiments and previous
reports,8,9 we propose the plausible mechanism for the
present reaction shown in Scheme 4. Initially, I2 active the
disulfide ArSSAr 1 to give the intermediate ArS–I (I).11 This
liberates radical ArS∙ (II) and an iodine free radical.11 Subse-
quent addition of II to alkene 2 generates radical III, which
reacts with molecular oxygen to give the peroxy radical
IV.5h Reaction between intermediates III and IV then affords
radical V,12 which reacts with the iodine free radical and
abstracts one hydrogen atom from H2O to form the desired
product 3 and the catalyst I2.
(1) (a) Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.;
Kaneda, K. Angew. Chem. Int. Ed. 2014, 53, 8348. (b) Sahu, D.;
Dey, S.; Pathak, T.; Ganguly, B. Org. Lett. 2014, 16, 2100.
(2) Luly, J. R.; Yi, N.; Soderquist, J.; Stein, H.; Cohen, J.; Perun, T. J.;
Plattner, J. J. Med. Chem. 1987, 30, 1609.
(3) Corey, E. J.; Clark, D. A.; Goto, G.; Marfat, A.; Mioskowski, C.;
Samuelsson, B.; Hammarstrom, S. J. Am. Chem. Soc. 1980, 102,
1436.
(4) (a) Chandrasekhar, S.; Reddy, C. R.; Babu, B. N.; Chandrasekhar,
G. Tetrahedron Lett. 2002, 43, 3801. (b) Fan, R.-H.; Hou, X.-L.
J. Org. Chem. 2003, 68, 726. (c) Pironti, V.; Colonna, S. Green
Chem. 2005, 7, 43. (d) Fringuelli, F.; Pizzo, F.; Tortoioli, S.;
Vaccaro, L. J. Org. Chem. 2004, 69, 8780. (e) Fringuelli, F.; Pizzo,
F.; Tortoioli, S.; Vaccaro, L. J. Org. Chem. 2003, 68, 8248.
(f) Kamal, A.; Reddy, D. R. ; Rajendar J. Mol. Catal. A: Chem. 2007,
272, 26. (g) Su, W.; Chen, J.; Wu, H.; Jin, C. J. Org. Chem. 2007, 72,
4524. (h) Chen, J.; Wu, H.; Jin, C.; Zhang, X.; Xie, Y.; Su, W. Green
Chem. 2006, 8, 330.
OH
ArS-SAr
1
S
Ar
R
O
I2
3
H2O + I
ArS I
I
S
Ar
R
V
(5) (a) Singh, A. K.; Chawla, R.; Keshari, T.; Yadav, V. K.; Yadav, L. D.
S. Org. Biomol. Chem. 2014, 12, 8550. (b) Lanke, S. R.; Bhanage, B.
M. Catal. Commun. 2013, 41, 29. (c) Wang, H.; Lu, Q.; Liu, L.; Liu,
C.; Kai, C.; Lei, A. Angew. Chem. Int. Ed. 2016, 55, 1094. (d) Xi, H.;
Deng, B.; Zong, Z.; Lu, S.; Li, Z. Org. Lett. 2015, 17, 1180. (e) Zhou,
S.-F.; Pan, X.-Q.; Zhou, Z.-H.; Shoberu, A.; Zhou, J.-P. J. Org.
Chem. 2015, 80, 3682. (f) Wang, Y.; Jiang, W.; Huo, C. J. Org.
Chem. 2017, 82, 10628. (g) Huo, C.; Wang, Y.; Yuan, Y.; Chen, F.;
Tang, J. Chem. Commun. 2016, 52, 7233. (h) Zhang, B.; Liu, T.;
Bian, Y.; Lu, T.; Feng, J. ACS Sustainable Chem. Eng. 2017, 6, 2651.
(6) (a) Devan, N.; Sridhar, P. R.; Prabhu, K. R.; Chandrasekaran, S.
J. Org. Chem. 2002, 67, 9417. (b) Yoon, N. M.; Choi, J.; Ahn, J. H.
J. Org. Chem. 1994, 59, 3490. (c) Dowsland, J.; McKerlie, F.;
Procter, D. J. Tetrahedron Lett. 2000, 41, 4923. (d) Ranu, B. C.;
Mandal, T. Can. J. Chem. 2006, 84, 762. (e) Khodaei, M. M.;
Khosropour, A. R.; Ghozati, K. J. Braz. Chem. Soc. 2005, 16, 673.
(7) Movassagh, B.; Navidi, M. Tetrahedron Lett. 2008, 49, 6712.
(8) Yadav, V. K.; Srivastava, V. P.; Yadav, L. D. S. Tetrahedron Lett.
2015, 56, 2892.
O
R
I
III
O
ArS
II
S
Ar
IV
R
S
2
Ar
R
III
O2
Scheme 4 The proposed mechanism
In summary, we have developed an environmentally
friendly and effective molecular-iodine-catalyzed reaction
for the preparation of -hydroxy sulfides in aqueous solu-
tion.13 This reaction uses disulfides instead of fetid, sensi-
tive, and toxic thiols. Importantly, air is used as the oxidant
without any additive. Furthermore, H218O isotope experi-
ment indicated that the oxygen atom of the products comes
from O2. Moreover, both terminal aryl alkenes, ,-substi-
(9) Zhang, R.; Jin, S.; Wan, Y.; Lin, S.; Yan, S. Tetrahedron Lett. 2018,
59, 841.
© 2019. Thieme. All rights reserved. — Synlett 2019, 30, A–E