and biaryl conformations in these compounds is less secure
(compare Table 1 pairs of entries 41/42 and 43/44 with the pair of
entries 7/11).
These results indicate that rational control over C–C, C–N and
C–O bond conformation is possible by judicious exploitation of
dipolar interactions. We are currently extending this work to the
study of stereochemical relay effects,8 and to the stereoselective
synthesis of new classes of atropisomers.
We are grateful to the Leverhulme Trust, EPSRC,
GlaxoSmithKline and Pfizer for supporting this work.
Notes and references
Fig. 1 (a) X-Ray crystal structure of 4x (R = H, Z = p-Tol); (b) X-Ray
crystal structure of 5x (R = CH2OMe; Z = t-Bu).21,22
1 M. S. Betson, J. Clayden, H. K. Lam and M. Helliwell, Angew. Chem.,
Int. Ed., 2005, 44, 1241.
2 M. L. Bushey, T.-Q. Nguyen, W. Zhang, D. Horoszewski and
C. Nuckolls, Angew. Chem., Int. Ed., 2004, 43, 5446.
3 L. O. Abouderbala, W. J. Belcher, M. G. Boutelle, P. J. Cragg,
J. W. Steed, D. R. Turner and K. J. Wallace, Proc. Natl. Acad. Sci.
U. S. A., 2002, 99, 5001; K. J. Wallace, W. J. Belcher, D. R. Turner,
K. F. Syed and J. W. Steed, J. Am. Chem. Soc., 2003, 125, 9699;
G. Hennrich and E. V. Anslyn, Chem.–Eur. J., 2002, 8, 2219;
K. V. Kilway and J. S. Siegel, Tetrahedron, 2001, 57, 3615.
4 J. Clayden, Chem. Commun., 2004, 127.
5 J. Clayden, C. C. Stimson and M. Keenan, Synlett, 2005, 1716; M. Petit,
A. J. B. Lapierre and D. P. Curran, J. Am. Chem. Soc., 2005, 127,
14994.
6 J. Clayden, A. Lund, L. Vallverdu´ and M. Helliwell, Nature, 2004, 431,
966.
Scheme 4 Conformational communication with amides.
7 J. Clayden and N. Vassiliou, Org. Biomol. Chem., 2006, 4, 2667.
8 J. Clayden, D. Mitjans and L. H. Youssef, J. Am. Chem. Soc., 2002,
124, 5266.
9 J. Clayden, L. W. Lai and M. Helliwell, Tetrahedron, 2004, 60, 4399.
10 R. W. Hoffmann, Angew. Chem., Int. Ed., 2000, 39, 2054.
11 M. S. Betson, J. Clayden, M. Helliwell, P. Johnson, L. W. Lai, J. H. Pink,
C. C. Stimson, N. Vassiliou, N. Westlund, S. A. Yasin and
L. H. Youssef, Org. Biomol. Chem., 2006, 4, 424.
12 M. S. Betson, J. Clayden, M. Helliwell and D. Mitjans, Org. Biomol.
Chem., 2005, 3, 3898.
13 C. Agami and T. Rizk, Tetrahedron, 1985, 41, 537.
14 Biaryls bearing only two ortho-substituents are not usually atropisomeric
(however, see: W. B. Jennings, B. M. Farrell and J. F. Malone, J. Org.
Chem., 2006, 71, 2277; A. Herrbach, A. Marinetti, O. Baudoin,
D. Gue´nard and F. Gue´ritte, J. Org. Chem., 2003, 68, 4897; O. Desponds
and M. Schlosser, Tetrahedron Lett., 1996, 37, 47), but have C–C
conformers that are distinguishable by NMR: see G. Bott, L. D. Field
and S. Sternhell, J. Am. Chem. Soc., 1980, 102, 5618; A. Mazzanti,
L. Lunazzi, M. Minzoni and J. E. Anderson, J. Org. Chem., 2006, 71,
5474.
Scheme 5 Amplification and relay of conformational control. Reagents
and conditions a: sec-BuLi, THF, 278 uC; b: (2)-menthyl toluenesulfi-
nate; c: Me2NCHO; d: (2)-ephedrine, toluene, D; e: KMnO4; f: (COCl)2,
Me2NCHO, CH2Cl2; g: HNi-Pr2, Et3N, CH2Cl2; h: SnCl2?2H2O, HCl; i:
PhNCO, CH2Cl2; j: NaH, MeI; k: n-BuLi, THF, 278 uC.
an otherwise poorly controlled axis. To test this hypothesis, we
made biaryls 6x and 6y (R = Me and OMe) by the ortho-lithiation
of 3z (Scheme 5). We also made diaryl urea 10y from 7. Oxidation
and amide formation gave 8, which was shown to be chiral by
HPLC on a chiral stationary phase. Reduction and urea formation
gave 9, which, like 4z, was conformationally uniform. Halogen
metal exchange and conversion via the aldehyde to the oxazolidine
gave 10y whose X-ray crystal structure is shown in the
supplementary information.{21
15 G. Karig, M.-T. Moon, N. Thasana and T. Gallagher, Org. Lett., 2002,
4, 3115.
16 C–N bond rotation in N,N9-diarylureas may be slow on the NMR
timescale, though N,N9-diarylureas are not generally atropisomeric. See:
T. Adler, J. Bonjoch, J. Clayden, M. Font-Bard´ıa, M. Pickworth,
X. Solans, D. Sole´ and L. Vallverdu´, Org. Biomol. Chem., 2005, 3, 3173.
17 Tri-ortho-substituted diaryl ethers 5 exhibit conformers that are not
atropisomers but are distinguishable by NMR. See: M. S. Betson,
J. Clayden, C. P. Worrall and S. Peace, Angew. Chem., Int. Ed., 2006,
45, 5803.
The NMR spectra of 6x (R = OMe), 6y (R = OMe) and 10y
indicated that these compounds exist almost entirely as single
conformers about their Ar–Ar or Ar–N bonds (Table 1, entries 42,
44 and 45), despite the fact that their congeners 3x (R = OMe), 3y
(R = OMe) and 4y, in which the oxazolidine lies directly adjacent
to the axis, exhibit only poor conformational control (Table 1,
entries 2, 6, 23 and 24). The amide successfully picks up the
stereocontrolling influence of the oxazolidine, amplifies and inverts
it (suggesting projection19 as an apt analogy), and hence induces
control over an adjacent C–C or C–N bond. Control in 6x and 6y
(R = Me) is unsurprisingly less good, since the coupling of amide
18 J. Clayden, A. Lund and L. H. Youssef, Org. Lett., 2001, 3, 4133.
19 J. Clayden and L. W. Lai, Tetrahedron Lett., 2001, 42, 3163.
20 J. Clayden, L. W. Lai and M. Helliwell, Tetrahedron: Asymmetry, 2001,
12, 695.
21 X-ray crystallographic data and ball-and-stick figures of crystal
structures reported in this paper may be found in the Electronic
Supporting Information. CCDC 623108 (4x, R = H, Z = p-Tol), 623109
(5x, R = CH2OMe, Z = t-Bu), 623110 (4z, R = H) and 623110 (10y).
For crystallographic data in CIF or other electronic format see DOI:
10.1039/b614618j.
22 For clarity and consistency of conformational representation, Fig. 1(b)
shows a molecule enantiomeric with that described in the accompanying
crystallographic data.
756 | Chem. Commun., 2007, 754–756
This journal is ß The Royal Society of Chemistry 2007