1626
K.-U. Schöning et al.
LETTER
(4) (a) Umezawa, I., Funayama, S., Okada, K., Iwasaki, K., Satoh,
J., Masuda, K., Komiyama, K., J. Antibiot. 1985, 38, 699-705.
(b) Funayama, S., Okada, K., Komiyama, K., Umezawa, I., J.
Antibiot. 1985, 38, 1107-1109. (c) Funayama, S., Okada, K.,
Iwasaki, K., Komiyama, K., Umezawa, I., J. Antibiot. 1985,
Huisman, H. O., Rec. Trav. Chim. Pays-Bas 1973, 92, 683-
688.
(19) All compounds showed satisfactory spectroscopic data as well
as microanalytical and/or mass spectrometry data.
Diastereomeric ratios were established by 1H NMR. Selected
physical and spectroscopic data for compounds 21 and 5: 21:
colourless oil; 1H NMR (200 MHz, CDCl3) δ:7.28 (1H, dd,
J = 15.0, 11.2, 6-H), 6.50 (1H, dd, J = 14.8, 10.4, 4-H), 6.19
(1H, dd, J = 14.8, 11.2, 5-H), 6.09 (1H, dd, J = 15.0, 10.4, 3-
H), 5.85 (1H, ddd, J = 15.0, 6.8, 6.8, 7-H), 5.84 (1H, d,
J = 15.0, 2-H), 4.85 (1H, m, 13-HA), 4.81 (1H, m, 13-HB),
4.20 (2H, q, J = 7.0, OCH2CH3), 3.76 (1H, d, J = 6.0, 11-H),
3.53 (1H, m, 9-H), 2.15 (2H br t, J = 6.8, 8- HA, 8-HB), 1.79
(1H, m, 10-H), 1.69 (3H, s, 12-CH3), 1.29 (3H, t, J = 7.0,
OCH2CH3), 0.94 (3H, d, J = 6.8, 10-CH3), 0.89, 0.86 (18H, 2s,
38, 1677-1681. (d) Nomoto, H., Katsumata, S., Takahashi, K.,
–
Funayama, S., Komiyama, K., Umezawa, I., Omura, S. J., J.
Antibiot. 1989, 42, 479-481.
(5) Zhang, H.-P., Kakeya, H., Osada, H., Tetrahedron Lett. 1997,
38, 1789-1792.
(6) The thiazinotrienomycins inhibit the growth of HeLa-cells in
concentrations between 1.5 to 200 ng/ml: Hosokawa, N.,
Naganawa, H., Iinuma, H., Hamada, M., Takeuchi, T., J.
Antibiot. 1995, 48, 471-478.
(7) The absolute configuration of the stereotriad was determined
by Smith, A. B., Wood, J. L., Wong, W., Gould, A. E., Rizzo,
C. J., J. Am. Chem. Soc. 1990, 112, 7425-7426.
(8) (a) Smith, A. B., Wood, J. L., Wong, W., Gould, A. E., Rizzo,
C. J., Barbosa, J., Komiyama, K., Omura, S., J. Am. Chem.
Soc. 1996, 118, 8308-8315. (b) Masse, C. E., Yang, M.,
Solomon, J., Panek, J. S., J. Am. Chem. Soc. 1998, 120, 4123-
4134.
(9) For an alternate synthetic approach see: Schöning, K.-U.;
Hayashi, R. K.; Powell, D. R.; Kirschning, A., Tetrahedron
Asymm. 1999, 10, 817-820.
(10) Devant, M., Radunz, H.-E. in Stereoselective Synthesis,
Houben Weyl - Methods of Organic Chemistry, G. Helmchen,
R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds., E 21, Vol 2,
Georg Thieme Verlag, Stuttgart, New York 1996, p 1151-
1334.
(11) Heathcock, C. H., in Modern Synthetic Methods, Scheffold,
R., Ed., Verlag Helvetica Chimica Acta, Basel 1992, 1-102.
(12) Aldehyde 12 has also been prepared similarly by Smith and
coworkers.8a
(13) Evans, D. A., Gage, J. R., Leighton, J. L., J. Am. Chem. Soc.
1992, 114, 9434-9453.
2 tBu), 0.04, 0.01, -0.01 and -0.05 (12H, 4s, 2 SiMe2); 13
C
NMR (50 MHz, CDCl3) δ:167.2 (CO2Et), 146.5 (C-12),
144.8, 141.0, 138.5, 131.5, 127.9, 120.1 (C-2 - C-7), 112.8 (C-
13), 79.5 (C-11), 72.5 (C-9), 60.2 (OCH2CH3), 43.5 (C-10),
35.2 (C-8), 25.8 (2 x tBu), 18.2, 18.0 (2 x tBu), 16.7 (12-CH3),
14.3 (OCH2CH3), 10.0 (10-CH3), -4.3, -4.5, -4.6, -5.0
(2 x SiMe2). 5: colourless oil; [a]24D = -23.2 (c 0.77, CHCl3);
IR (cm-1) n: 2956(s), 2930(s), 2858(s), 1732(m), 1463(m),
1368(m), 1254(s), 1055(s), 836(s); 1H NMR (400 MHz,
CDCl3) δ:6.28-5.92 (m, 4H, 5-H, 6-H, 7-H, 8-H), 5.67 (1H, m,
9-H), 5.48 (1H, dd, J = 15.0, 8.0, 4-H), 4.84 (1H, m, 15-HA),
4.81 (1H, m, 15-HB), 4.01 (1H, ddd, J = 8.0, 7.6, 6.1, 3-H),
3.77 (1H, d, J = 9.0, 13-H), 3.51 (1H, m, 11-H), 3.27 (3H, s,
OCH3), 2.54 (1H, dd, J = 14.8, 7.6, 2-HA), 2.63 (1H, dd,
J = 14.8, 6.1, 2-HB), 2.10 (2H br t, J = 6.6, 10-H), 1.78 (1H, m,
12-H), 1.70 (3H, br s, 14-CH3), 1.43 (9H, s, OtBu), 0.93 (3H,
d, J = 6.8, 12-CH3), 0.88, 0.86 (18H, 2s, 2x tBu), 0.04, 0.0, -
0.02 -0.04 (12H, 4s, 2 x SiMe2); 13C NMR (100 MHz, CDCl3)
δ:170.1 (C-1), 146.5 (C-15), 134.1, 134.0, 133.5, 131.8,
131.1, 129.4 (C-4 - C-9), 112.7 (C-14), 80.6 (OtBu), 79.5 (C-
3), 78.9 (C-13), 72.7 (C-11), 56.4 (OCH3), 43.5 (C-12), 42.4
(C-2), 35.0 (C-10), 28.1 (OtBu), 25.8 (2 x SitBu), 18.2, 18.0
(2x SitBu), 16.7 (14-CH3), 10.0 (12-CH3), -4.3, -4.5, -4.6 and
-5.0 (2 x SiMe2).
(14) Tietze, L. F., Hartfiel, U., Hübsch, T., Voß, E., Bogdanowicz-
Szwed K., Wichmann, J., Liebigs. Ann. 1991, 275-281.
(15) (a) Evans, D. A., Black, W. C., J. Am. Chem. Soc. 1992, 114,
2260-2262. (b) Damon, R. E., Coppola, G. M., Tetrahedron
Lett. 1990, 31, 2849-2852.
(16) Makin, S. K., Telegina, N. I., Gen. Chem. USSR 1962, 32,
1082.
(17) Yanovskaya, L. A., Rudenko, B. A., Kucherov, V. F.,
Stepanova, R. N., Kogan, G. A., Bull. Acad. Sci. USSR, Div.
Chem. Si. 1962, 2093-2099.
(20) Duthaler, R. O.; Herold, P.; Lottenbach, W.; Oertle, K.;
Riediker, M.; Angew. Chem. 1989, 101, 490-491; Angew.
Chem. Int. Ed. Engl. 1989, 28, 495-496.
(21) The assignment of the configuration is based on the known
preference for the Duthaler method.
(18) (a) de Koning, H.; Subramanian-Erhart; K. E. C.; Huisman, H.
O., Synth. Commun. 1973, 3, 25. (b) de Koning, H.; Mallo, G.
N.; Springer-Fidder, A.; Subramanian-Erhart; K. E. C.;
Article Identifier:
1437-2096,E;1999,0,10,1624,1626,ftx,en;G17599ST.pdf
Synlett 1999, No. 10, 1624–1626 ISSN 0936-5214 © Thieme Stuttgart · New York