LETTER
19F NMR Studies of Addition of Acetoacetates to Nitroolefins
2205
O
O
O
O
H
H
N
N
Me
EtO
Me
H
H
N
O
N
O
H
N
H
N
S
S
O
O
H
N
H
N
EtO
Ar
Ar
B
A
H
N
H
H
EtO
Me
H
MeCO
Ph
CO2Et
NO2
EtO2C
Ph
O2N
Ph
COMe
O
1
H N
1
S
NO2
O
H
H
N
H
H
Ar
(2S,3S-4)
(2R,3S-4)
C
Scheme 2 Models for the formation of diastereoisomers and epimerization in the presence of catalyst 1
(5) (a) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto,
Y. J. Am. Chem. Soc. 2005, 127, 119. (b) McCooey, S. H.;
Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367.
(c) McCooey, S. H.; McCabe, T.; Connon, S. J. J. Org.
Chem. 2006, 71, 7494. (d) Ye, J.; Dixon, D. J.; Hynes, P. S.
Chem. Commun. 2005, 4481. (e) Andrés, J. M.; Manzano,
R.; Pedrosa, R. Chem. Eur. J. 2008, 14, 5116.
(6) Terada, H.; Ube, H.; Yaguchi, Y. J. Am. Chem. Soc. 2006,
128, 1454.
(7) Wang, J.; Li, H.; Duan, W.; Zu, L.; Wang, W. Org. Lett.
2005, 7, 4713.
sitions of the carbonyl and the nitro groups, has been
previously observed by us in some related reactions.16
Alternatively, although adducts 4 and 7 are very prone to
be deprotonated and form enolates, an enol-mediated
epimerization pathway might also be suggested, which
would involve the activation of the enol of the corre-
sponding adduct by both the amino group and the thiourea
moiety of the catalyst, as previously proposed for differ-
ent reactions.17
(8) (a) Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y. Org. Lett.
2006, 8, 2901. (b) Cao, Y.-J.; Lu, H.-H.; Lai, Y.-Y.; Lu, L.-
Q.; Xiao, W.-J. Synthesis 2006, 3795. (c) Ban, S.; Du, D.-
M.; Liu, H.; Yang, W. Eur. J. Org. Chem. 2010, 5160.
(9) (a) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.;
Foxman, B. M.; Deng, L. Angew. Chem. Int. Ed. 2005, 44,
105. (b) Zhang, Z.-H.; Dong, X.-Q.; Chen, D.; Wang, C.-J.
Chem. Eur. J. 2008, 14, 8780. (c) Yu, Z.; Liu, X.; Zhou, L.;
Lin, L.; Feng, X. Angew. Chem. Int. Ed. 2009, 48, 5159.
(d) Manzano, R.; Andrés, J. M.; Muruzábal, M. D.; Pedrosa,
R. Adv. Synth. Catal. 2010, 352, 3364.
In summary, the described results showed that the diaste-
reoselection in the addition of prochiral dicarbonyl com-
pounds to nitroolefins is dependent on a series of
experimental parameters, especially on the reaction time.
Only a careful control of the reaction evolution could get
acceptable diastereomeric ratios.
Supporting Information for this article is available online at
(10) (a) Li, H.; Zhang, S.; Yu, C.; Song, X.; Wang, W. Chem.
Commun. 2009, 2136. (b) Oh, Y.; Kim, S. M.; Kim, D. Y.
Tetrahedron Lett. 2009, 50, 4674.
(11) (a) Jiang, X.; Zhang, Y.; Liu, X.; Zhang, G.; Lai, L.; Wu, L.;
Zhang, J.; Wang, R. J. Org. Chem. 2009, 74, 5562.
(b) Almasi, D.; Alonso, D. A.; Gómez-Bengoa, E.; Nájera,
C. J. Org. Chem. 2009, 74, 6163.
Acknowledgment
We thank the Spanish MICINN for funding (Project CTQ2008-
03960/BQU). R.M. also thanks Spanish MEC for a pre-doctoral fel-
lowship (FPU).
(12) (3S)-Ethyl 2-Acetyl-4-nitro-3-phenylbutanoate (4): To a
stirred solution of trans-b-nitrostyrene (2; 0.30 mmol, 45.6
mg) and catalyst 1 (0.03 mmol, 12.0 mg) in toluene (0.6 mL)
was added ethyl acetoacetate (3; 0.60 mmol, 0.08 mL) at
–18 °C. The reaction mixture was stirred until disappearance
of the nitroolefin (observed by TLC). The solvent was removed
in vacuo and the residue was purified by flash chromatog-
raphy (hexane–EtOAc, 20:1 to 15:1 as eluent) to afford the
desired product 4 (0.30 mmol, 83 mg, 99% yield, 54:46 dr,
96:4 er).
References and Notes
(1) Perlmutter, P. In Conjugate Addition Reactions in Organic
Synthesis; Pergamon Press: Oxford, 1992.
(2) (a) Bella, M.; Gasperi, T. Synthesis 2009, 1583.
(b) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
(c) Vicario, J. L.; Badía, D.; Carrillo, L. Synthesis 2007,
2065. (d) Almasi, D.; Alonso, D. A.; Nájera, C.
Tetrahedron: Asymmetry 2007, 18, 299.
(13) See Supporting Information.
(3) (a) Okino, T.; Hoashi, Y.; Yamamoto, Y. J. Am. Chem. Soc.
2003, 125, 12672. (b) Lubkoll, J.; Wennemers, H. Angew.
Chem. Int. Ed. 2007, 46, 6841. (c) Tsogoeva, S. B.; Yalalov,
D. A.; Hateley, M. J.; Weckbecker, C.; Huthmacher, K. Eur.
J. Org. Chem. 2005, 4995. (d) Yalalov, D. A.; Tsogoeva, S.
B.; Schmatz, S. Adv. Synth. Catal. 2006, 348, 826.
(e) Miyabe, H.; Tuchida, S.; Yamauchi, M.; Takemoto, Y.
Synthesis 2006, 3295.
(4) (a) Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128,
7170. (b) Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006,
1451. (c) Wei, S.; Yalalov, D. A.; Tsogoeva, S. B.; Schmatz,
S. Catal. Today 2007, 121, 151.
(14) Ji, J.; Barnes, D. M.; Zhang, J.; King, S. A.; Wittenberger, S.
J.; Morton, H. E. J. Am. Chem. Soc. 1999, 121, 10215.
(15) (a) Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S. Adv. Synth.
Catal. 2006, 348, 826. (b) Hamza, A.; Schubert, G.; Soós,
T.; Pápai, I. J. Am. Chem. Soc. 2006, 128, 13151.
(16) Manzano, R.; Andrés, J. M.; Álvarez, R.; Muruzábal, M. D.;
de Lera, A. R.; Pedrosa, R. Chem. Eur. J. 2011, 17, 5931.
(17) (a) Yalalov, D. A.; Tsogoeva, S. B.; Shubina, T. E.;
Martynova, I. M.; Clark, T. Angew. Chem. Int. Ed. 2008, 47,
6624. (b) Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc.
2007, 129, 15872.
Synlett 2011, No. 15, 2203–2205 © Thieme Stuttgart · New York