Organic Letters
Letter
(3) (a) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(b) Liu, Q.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. 2011, 50, 10788.
(c) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
(d) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed.
2011, 50, 11062. (e) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736.
(4) (a) Nam, W. Acc. Chem. Res. 2007, 40, 465. (b) Stahl, S. S. Angew.
Chem., Int. Ed. 2004, 43, 3400.
(5) (a) Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D.
Angew. Chem., Int. Ed. 2013, 52, 9747. (b) Dickschat, A.; Studer, A. Org.
Lett. 2010, 12, 3972. (c) Jiang, Y.; Loh, T.-P. Chem. Sci. 2014, 5, 4939.
(d) Su, Y.; Sun, X.; Wu, G.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52,
9808. (e) Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Angew.
Chem., Int. Ed. 2010, 49, 10154. (f) Toh, K. K.; Wang, Y.-F.; Ng, E. P. J.;
Chiba, S. J. Am. Chem. Soc. 2011, 133, 13942. (g) Wang, H.; Wang, Y.;
Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Angew. Chem., Int. Ed. 2011, 50,
5678. (h) Wang, T.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 11692. (i) Wei,
W.; Ji, J.-X. Angew. Chem., Int. Ed. 2011, 50, 9097. (j) Wei, W.; Liu, C.;
Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Chem. Commun. 2013, 49,
10239. (k) Xie, J.; Huang, Z. Z. Chem. Commun. 2010, 46, 1947.
(6) (a) Perkins, M. J.; Berti, C.; Brooks, D. J.; Grierson, L.; Grimes, J.
A.-M.; Jenkins, T. C.; Smith, S. L. Pure Appl. Chem. 1990, 62, 195.
(b) Jiang, X.-Y.; Qing, F.-L. Angew. Chem., Int. Ed. 2013, 52, 14177.
(c) Bag, R.; Sar, D.; Punniyamurthy, T. Org. Lett. 2015, 17, 2010.
(d) Andia, A. A.; Miner, M. R.; Woerpel, K. A. Org. Lett. 2015, 17, 2704.
(e) Xia, X.-F.; Zhu, S.-L.; Gu, Z.; Wang, H.; Li, W.; Liu, X.; Liang, Y.-M. J.
Org. Chem. 2015, 80, 5572. (f) Hara, T.; Iwahama, T.; Sakaguchi, S.;
Ishii, Y. J. Org. Chem. 2001, 66, 6425.
(7) (a) Hartmann, M.; Li, Y.; Studer, A. J. Am. Chem. Soc. 2012, 134,
16516. (b) Li, Y.; Hartmann, M.; Daniliuc, C. G.; Studer, A. Chem.
Commun. 2015, 51, 5706. (c) Li, Y.; Studer, A. Angew. Chem., Int. Ed.
2012, 51, 8221. (d) Zhang, B.; Studer, A. Org. Lett. 2013, 15, 4548.
(8) (a) Giglio, B. C.; Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc.
2011, 133, 13320. (b) Schmidt, V. A.; Alexanian, E. J. Angew. Chem., Int.
Ed. 2010, 49, 4491.
(9) (a) Liu, J.; Zhang, X.; Yi, H.; Liu, C.; Liu, R.; Zhang, H.; Zhuo, K.;
Lei, A. Angew. Chem., Int. Ed. 2015, 54, 1261. (b) Liu, Q.; Wu, P.; Yang,
Y.; Zeng, Z.; Liu, J.; Yi, H.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 4666.
(c) Lu, Q.; Liu, C.; Huang, Z.; Ma, Y.; Zhang, J.; Lei, A. Chem. Commun.
2014, 50, 14101. (d) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.;
Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156. (e) Lu, Q.; Zhang, J.; Zhao,
G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481. (f) Lu,
Q.; Chen, J.; Liu, C.; Huang, Z.; Peng, P.; Wang, H.; Lei, A. RSC Adv.
2015, 5, 24494. (g) Lu, Q.; Zhang, J.; Peng, P.; Zhang, G.; Huang, Z.; Yi,
(h) Lu, Q.; Wang, H.; Peng, P.; Liu, C.; Huang, Z.; Luo, Y.; Lei, A. Org.
(10) The inductive period might be due to the transformation from
Cu(I) to Cu(II), but other reasons cannot be excluded at current stage.
(11) (a) Deng, Y.; Zhang, G.; Qi, X.; Liu, C.; Miller, J. T.; Kropf, A. J.;
Bunel, E. E.; Lan, Y.; Lei, A. Chem. Commun. 2015, 51, 318. (b) Zhang,
G.; Yi, H.; Zhang, G.; Deng, Y.; Bai, R.; Zhang, H.; Miller, J. T.; Kropf, A.
J.; Bunel, E. E.; Lei, A. J. Am. Chem. Soc. 2014, 136, 924.
(12) According to one of the reviewers, the initial interaction between
Cu(I) and O2 may produce Cu(II) and superoxide radical anion. The
superoxide radical anion could be also possibly coupled with
intermediate II and Cu(II) to give intermediate IV.
(13) Some difunctionalization byproducts generated from one
molecular alkenes reacted with two molecular hydroxamic acid were
detected. In addition, secondary amine generated from the decom-
position of the hydroxamic acid was also detected.
(14) Only a trace amount of the desired product was detected when
(E)-1,2-diphenylethene was employed. For nonaromatic ring sub-
stituted alkenes, as exemplified by acrylic acid butyl ester and
allylbenzene, no desired product was obtained under the standard
conditions.
(15) A 46% yield of 4b was obtained when CuCl (10% mol) was used
as the catalyst precursor.
D
Org. Lett. XXXX, XXX, XXX−XXX