Organic Letters
Letter
X.; Li, S. Chemoselective Borane-Catalyzed Hydroarylation of 1,3-
Dienes with Phenols. Angew. Chem., Int. Ed. 2019, 58, 1694. For a
review, see also: (c) Huang, Z.; Lumb, J.-P. Phenol-Directed C−H
Functionalization. ACS Catal. 2019, 9, 521.
(8) Ohlow, M. J.; Moosmann, B. Phenothiazine: the seven lives of
pharmacology’s first lead structure. Drug Discovery Today 2011, 16,
119.
(9) (a) Bernthsen, A. Ber. Dtsch. Chem. Ges. 1883, 16, 2896.
(b) Bernthsen, A. Annalen 1885, 230, 73. (c) Jin, R.; Bub, C. L.;
Patureau, F. W. Phenothiazinimides: Atom-Efficient Electrophilic
Amination Reagents. Org. Lett. 2018, 20, 2884.
(10) See, for example: Connelly, N. G.; Geiger, W. E. Chemical
Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96,
877.
(11) Youn’s hydroarylation reaction sequence of phenols with
dienes, under silver triflate catalysis, and suggested mechanism in
which catalytic Ag(I) is proposed to act as a Lewis acid: Youn, S. W.;
Eom, J. I. Ag(I)-Catalyzed Sequential C−C and C−O Bond
Formations between Phenols and Dienes with Atom Economy. J.
Org. Chem. 2006, 71, 6705.
(4) (a) Weibel, J.-M.; Blanc, A.; Pale, P. Ag-Mediated Reactions:
Coupling and Heterocyclization Reactions. Chem. Rev. 2008, 108,
3149. (b) Alvarez-Corral, M.; Munoz-Dorado, M.; Rodriguez-Garcia,
I. Silver-Mediated Synthesis of Heterocycles. Chem. Rev. 2008, 108,
3174. (c) Fang, G.; Bi, X. Silver-catalysed reactions of alkynes: recent
advances. Chem. Soc. Rev. 2015, 44, 8124. (d) Zheng, Q.-Z.; Jiao, N.
Ag-catalyzed C−H/C−C bond functionalization. Chem. Soc. Rev.
2016, 45, 4590. (e) Fang, G.; Cong, X.; Zanoni, G.; Liu, Q.; Bi, X.
Silver-Based Radical Reactions: Development and Insights. Adv.
Synth. Catal. 2017, 359, 1422.
(5) (a) Fischer, H. The Persistent Radical Effect: A Principle for
Selective Radical Reactions and Living Radical Polymerizations.
Chem. Rev. 2001, 101, 3581. (b) Studer, A.; Curran, D. P. The
electron is a catalyst. Nat. Chem. 2014, 6, 765. (c) Luca, O. R.;
Gustafson, J. L.; Maddox, S. M.; Fenwick, A. Q.; Smith, D. C.
Catalysis by electrons and holes: formal potential scales and
preparative organic electrochemistry. Org. Chem. Front. 2015, 2,
823. (d) Studer, A.; Curran, D. P. Catalysis of Radical Reactions: A
Radical Chemistry Perspective. Angew. Chem., Int. Ed. 2016, 55, 58.
(6) (a) Lucarini, M.; Pedrielli, P.; Pedulli, G. F.; Valgimigli, L.;
Gigmes, D.; Tordo, P. Bond Dissociation Energies of the N−H Bond
and Rate Constants for the Reaction with Alkyl, Alkoxyl, and Peroxyl
Radicals of Phenothiazines and Related Compounds. J. Am. Chem.
Soc. 1999, 121, 11546. (b) Louillat-Habermeyer, M.-L.; Jin, R.;
Patureau, F. W. O2-mediated dehydrogenative amination of phenols.
Angew. Chem., Int. Ed. 2015, 54, 4102. (c) Zhao, Y.; Huang, B.; Yang,
C.; Xia, W. Visible-Light-Promoted Direct Amination of Phenols via
Oxidative Cross-Dehydrogenative Coupling Reaction. Org. Lett. 2016,
18, 3326. (d) Zhao, Y.; Huang, B.; Yang, C.; Li, B.; Gou, B.; Xia, W.
Photocatalytic Cross-Dehydrogenative Amination Reactions between
Phenols and Diarylamines. ACS Catal. 2017, 7, 2446. (e) Tang, S.;
Wang, S.; Liu, Y.; Cong, H.; Lei, A. Electrochemical Oxidative C-H
Amination of Phenols: Access to Triarylamine Derivatives. Angew.
Chem., Int. Ed. 2018, 57, 4737. (f) Bering, L.; D’Ottavio, L.;
Sirvinskaite, G.; Antonchick, A. P. Nitrosonium ion catalysis: aerobic,
metal-free cross-dehydrogenative carbon−heteroatom bond forma-
tion. Chem. Commun. 2018, 54, 13022. (g) Goswami, M.; Konkel, A.;
Rahimi, M.; Louillat-Habermeyer, M.-L.; Kelm, H.; Jin, R.; de Bruin,
B.; Patureau, F. W. Mechanism of the Dehydrogenative Phenothiazi-
nation of Phenols. Chem. - Eur. J. 2018, 24, 11936. (h) Patureau, F.
W. The Phenol-Phenothiazine Coupling: an Oxidative Click Concept.
(7) (a) Treat, N. J.; Sprafke, H.; Kramer, J. W.; Clark, P. G.; Barton,
B. E.; Read de Alaniz, J.; Fors, B. P.; Hawker, C. J. Metal-Free Atom
Transfer Radical Polymerization. J. Am. Chem. Soc. 2014, 136, 16096.
(b) Pan, X.; Lamson, M.; Yan, J.; Matyjaszewski, K. Photoinduced
Metal-Free Atom Transfer Radical Polymerization of Acrylonitrile.
ACS Macro Lett. 2015, 4, 192. (c) Pan, X.; Fang, C.; Fantin, M.;
Malhotra, N.; So, W. Y.; Peteanu, L. A.; Isse, A. A.; Gennaro, A.; Liu,
P.; Matyjaszewski, K. Mechanism of Photoinduced Metal-Free Atom
Transfer Radical Polymerization: Experimental and Computational
Studies. J. Am. Chem. Soc. 2016, 138, 2411. (d) Salunke, J. K.; Wong,
F. L.; Feron, K.; Manzhos, S.; Lo, M. F.; Shinde, D.; Patil, A.; Lee, C.
S.; Roy, V. A. L.; Sonar, P.; Wadgaonkar, P. P. Phenothiazine and
carbazole substituted pyrene based electroluminescent organic
semiconductors for OLED devices. J. Mater. Chem. C 2016, 4,
1009. (e) Kumar, S.; Singh, M.; Jou, J.-H.; Ghosh, S. Trend breaking
substitution pattern of phenothiazine with acceptors as a rational
design platform for blue emitters. J. Mater. Chem. C 2016, 4, 6769.
(f) Grisorio, R.; Roose, B.; Colella, S.; Listorti, A.; Suranna, G. P.;
Abate, A. Molecular Tailoring of Phenothiazine-Based Hole-Trans-
porting Materials for High-Performing Perovskite Solar Cells. ACS
Energy Lett. 2017, 2, 1029.
E
Org. Lett. XXXX, XXX, XXX−XXX