Published on Web 11/01/2008
Rhodium-Catalyzed Silylation and Intramolecular Arylation of
Nitriles via the Silicon-Assisted Cleavage of Carbon-Cyano
Bonds
Mamoru Tobisu,*,† Yusuke Kita, Yusuke Ano, and Naoto Chatani*
Department of Applied Chemistry, Faculty of Engineering, Osaka UniVersity, Suita,
Osaka 565-0871, Japan
Received June 30, 2008; E-mail: tobisu@chem.eng.osaka-u.ac.jp; chatani@chem.eng.osaka-u.ac.jp
Abstract: A rhodium-catalyzed silylation reaction of carbon-cyano bonds using disilane has been
developed. Under these catalytic conditions, carbon-cyano bonds in aryl, alkenyl, allyl, and benzyl cyanides
bearing a variety of functional groups can be silylated. The observation of an enamine side product in the
silylation of benzyl cyanides and related stoichiometric studies indicate that the carbon-cyano bond cleavage
proceeds through the deinsertion of silyl isocyanide from η2-iminoacyl complex B. Knowledge gained from
these studies has led to the development of a new intramolecular biaryl coupling reaction in which aryl
cyanides and aryl chlorides are cross-coupled.
Introduction
(ca. 130 kcal/mol for Ar-CN) can be cleaved without the aid
of ring strain or extra coordinating groups.3 Fundamental interest
The cleavage of carbon-carbon σ-bonds by transition-metal
complexes and their use for chemical transformation would
provide a conceptually new strategy in organic synthesis.
However, the inherent stability of carbon-carbon σ-bonds
makes the development of such a process a daunting challenge.
Although some success has been attained to this end, it has
usually required the utilization of strained carbon-carbon bonds
or chelation-assisted systems.1,2 This limitation is absent in the
transition-metal-mediated cleavage of carbon-carbon σ-bonds
in nitriles, in which the strong carbon-cyano (C-CN) bond
in this unique process has prompted organometallic chemists
to identify two discrete mechanisms for the activation of C-CN
bonds. One process involves the oxidative addition to a low-
valent metal center, such as Pt,4 Pd,5 Ni,6 and others7 (Scheme
1). The vast majority of reported C-CN bond cleavage reactions
have occurred through this oxidative addition mechanism, and
its application to catalytic processes, including isomerization,8
cross-coupling,9 and carbocyanation,10 has also been discussed.11
In 2003, Bergman and Brookhart reported an alternative
mechanism in which a silyl ligand on the metal complex plays
a critical role (Scheme 2, M ) Rh).12-14 The insertion of a
cyano group into a metal-silyl bond in A forms the η2-
iminoacyl complex B, which undergoes the deinsertion of silyl
isocyanide to afford the carbon-carbon bond cleaved complex
† Frontier Research Base for Global Young Researchers, Graduate School
of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
(1) (a) Murakami, M.; Ito, Y. In ActiVation of UnreactiVe Bonds and
Organic Synthesis; Murai, S., Ed.; Springer: Berlin, 1999; p 99. (b)
van der Boom, M. E.; Milstein, D. Chem. ReV. 2003, 103, 1759. (c)
Jun, C.-H. Chem. Soc. ReV. 2004, 33, 610. (d) Kondo, T.; Mitsudo,
T. Chem. Lett. 2005, 34, 1462. (e) Park, Y. J.; Park, J.-W.; Jun, C.-H.
Acc. Chem. Res. 2008, 41, 222.
(7) Mo: (a) Churchill, D.; Shin, J. H.; Hascall, T.; Hahn, J. M.;
Bridgewater, B. M.; Parkin, G. Organometallics 1999, 18, 2403. Co:
(b) Ozawa, F.; Iri, K.; Yamamoto, A. Chem. Lett. 1982, 1707. (c) Li,
X.; Sun, H.; Yu, F.; Florke, U.; Klein, H.-F. Organometallics 2006,
25, 4695. U: (d) Adam, R.; Villiers, C.; Ephritikhine, M.; Lance, M.;
Nierlich, M.; Vigner, J. J. Organomet. Chem. 1993, 445, 99. Cu: (e)
Marlin, D. S.; Olmstead, M. M.; Mascharak, P. K. Angew. Chem.,
Int. Ed. 2001, 40, 4752. (f) Lu, T.; Zhuang, X.; Li, Y.; Chen, S. J. Am.
Chem. Soc. 2004, 126, 4760.
(2) For a notable exception, see:(a) Muller, C.; Iverson, C. N.; Lachicotte,
R. J.; Jones, W. D. J. Am. Chem. Soc. 2001, 123, 9718. (b) Gunay,
A.; Jones, W. D. J. Am. Chem. Soc. 2007, 129, 8729.
(3) (a) Tobisu, M.; Chatani, N. Chem. Soc. ReV. 2008, 37, 300. (b) Nakao,
Y.; Hiyama, T. Pure Appl. Chem. 2008, 80, 1097.
(4) Pt: Burmeister, J. L.; Edwards, L. M. J. Chem. Soc. A 1971, 1663.
See also ref 5.
(5) Pd: (a) Parshall, G. W. J. Am. Chem. Soc. 1974, 96, 2360. (b) Liu,
Q.-X.; Xu, F.-B.; Li, Q.-S.; Song, H.-B.; Zhang, Z.-Z. Organometallics
2004, 23, 610.
(8) (a) Chaumonnot, A.; Lamy, F.; Sabo-Etienne, S.; Donnadieu, B.;
Chaudret, B.; Barthelat, J.-C.; Galland, J.-C. Organometallics 2004,
23, 3363. (b) Wilting, J.; Mu¨ller, C.; Hewat, A. C.; Ellis, D. D.; Tooke,
D. M.; Spek, A. L.; Vogt, D. Organometallics 2005, 24, 13. (c) van
der Vlugt, J. I.; Hewat, A. C.; Neto, S.; Sablong, R.; Mills, A. M.;
Lutz, M.; Spek, A. L.; Mu¨ller, C.; Vogt, D. AdV. Synth. Catal. 2004,
346, 993. (d) Acosta-Ram´ırez, A.; Flores-Gaspar, A.; Mun˜oz-Her-
na´ndez, M.; Are´valo, A.; Jones, W. D.; Garc´ıa, J. J. Organometallics
2007, 26, 1712. (e) Acosta-Ram´ırez, A.; Mun˜oz-Herna´ndez, M.; Jones,
W. D.; Garc´ıa, J. J. Organometallics 2007, 26, 5766. (f) Acosta-
(6) Ni: (a) Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.;
Muetterties, E. L. J. Am. Chem. Soc. 1971, 93, 3543. (b) Morvillo,
A.; Turco, A. J. Organomet. Chem. 1981, 208, 103. (c) Favero, G.;
Morvillo, A.; Turco, A. J. Organomet. Chem. 1983, 241, 251. (d) Abla,
M.; Yamamoto, T. J. Organomet. Chem. 1997, 532, 267. (e) Luo,
F.-H.; Chu, C.-I.; Cheng, C.-H. Organometallics 1998, 17, 1025. (f)
Garcia, J. J.; Jones, W. D. Organometallics 2000, 19, 5544. (g) Garcia,
J. J.; Brunkan, N. M.; Jones, W. D. J. Am. Chem. Soc. 2002, 124,
9547. (h) Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am.
Chem. Soc. 2004, 126, 3627. (i) Garcia, J. J.; Arevalo, A.; Brunkan,
N. M.; Jones, W. D. Organometallics 2004, 23, 3997. (j) Ates¸in, T. A.;
Li, T.; Lachaize, S.; Brennessel, W. W.; Garc´ıa, J. J.; Jones, W. D.
J. Am. Chem. Soc. 2007, 129, 7562. (k) Schaub, T.; Do¨ring, C.; Radius,
U. Dalton Trans. 2007, 1993. See also refs 4 and 5.
´
Ram´ırez, A.; Flores-Alamo, M.; Jones, W. D.; Garc´ıa, J. J. Organo-
metallics 2008, 27, 1834. (g) Swartz, B. D.; Reinartz, N. M.;
Brennessel, W. W.; Garc´ıa, J. J.; Jones, W. D. J. Am. Chem. Soc.
2008, 130, 8548.
(9) (a) Miller, J. A. Tetrahedron Lett. 2001, 42, 6991. (b) Miller, J. A.;
Dankwardt, J. W. Tetrahedron Lett. 2003, 44, 1907. (c) Miller, J. A.;
Dankwardt, J. W.; Penney, J. M. Synthesis 2003, 1643.
9
15982 J. AM. CHEM. SOC. 2008, 130, 15982–15989
10.1021/ja804992n CCC: $40.75
2008 American Chemical Society