VOL. 54, 2010
MICROBICIDAL ACTIVITY OF LACTOFERRIN-DERIVED PEPTIDES
425
18. Håversen, L. A., I. Engberg, L. Baltzer, G. Dolphin, L. A. Hanson, and I.
Mattsby-Baltzer. 2000. Human lactoferrin and peptides derived from a sur-
face-exposed helical region reduce experimental Escherichia coli urinary
tract infection in mice. Infect. Immun. 68:5816–5823.
19. Hunter, H. N., A. R. Demcoe, H. Jenssen, T. J. Gutteberg, and H. J. Vogel.
2005. Human lactoferricin is partially folded in aqueous solution and is
better stabilized in a membrane mimetic solvent. Antimicrob. Agents Che-
mother. 49:3387–3395.
20. Japelj, B., P. Pristovsek, A. Majerle, and R. Jerala. 2005. Structural origin of
endotoxin neutralization and antimicrobial activity of a lactoferrin-based
peptide. J. Biol. Chem. 280:16955–16961.
21. Klein-Seetharaman, J., M. Oikawa, S. B. Grimshaw, J. Wirmer, E. Duch-
ardt, T. Ueda, T. Imoto, L. J. Smith, C. M. Dobson, and H. Schwalbe. 2002.
Long-range interactions within a nonnative protein. Science 295:1719–1722.
22. Lupetti, A., A. Paulusma-Annema, M. M. Welling, S. Senesi, J. T. van Dissel,
and P. H. Nibbering. 2000. Candidacidal activities of human lactoferrin
peptides derived from the N terminus. Antimicrob. Agents Chemother.
44:3257–3263.
Ala not only significantly reduced the MMC99 values in com-
parison to the natural sequence but led to the most active
peptide of all the peptides analyzed.
ACKNOWLEDGMENTS
The excellent technical assistance of Lotta Arna¨s is gratefully
acknowledged.
This study was financially supported by Aϩ Science Invest AB,
Gothenburg, Sweden.
REFERENCES
1. Aguilera, O., H. Ostolaza, L. M. Quiros, and J. F. Fierro. 1999. Permeabi-
lizing action of an antimicrobial lactoferricin-derived peptide on bacterial
and artificial membranes. FEBS Lett. 462:273–277.
2. Anderson, B. F., H. M. Baker, G. E. Norris, D. W. Rice, and E. N. Baker.
1989. Structure of human lactoferrin: crystallographic structure analysis and
23. Mann, D. M., E. Romm, and M. Migliorini. 1994. Delineation of the glycos-
aminoglycan-binding site in the human inflammatory response protein lac-
toferrin. J. Biol. Chem. 269:23661–23667.
˚
refinement at 2.8 A resolution. J. Mol. Biol. 209:711–734.
3. Appelmelk, B. J., Y. Q. An, M. Geerts, B. G. Thijs, H. A. de Boer, D. M.
MacLaren, J. de Graaff, and J. H. Nuijens. 1994. Lactoferrin is a lipid
A-binding protein. Infect. Immun. 62:2628–2632.
4. Bellamy, W., M. Takase, K. Yamauchi, H. Wakabayashi, K. Kawase, and M.
Tomita. 1992. Identification of the bactericidal domain of lactoferrin. Bio-
chim. Biophys. Acta 1121:130–136.
5. Chapple, D. S., R. Hussain, C. L. Joannou, R. E. Hancock, E. Odell, R. W.
Evans, and G. Siligardi. 2004. Structure and association of human lactoferrin
peptides with Escherichia coli lipopolysaccharide. Antimicrob. Agents Che-
mother. 48:2190–2198.
6. Chapple, D. S., C. L. Joannou, D. J. Mason, J. K. Shergill, E. W. Odell, V.
Gant, and R. W. Evans. 1998. A helical region on human lactoferrin—its role
in antibacterial pathogenesis. Adv. Exp. Med. Biol. 443:215–220.
7. Chen, P. W., C. L. Shyu, and F. C. Mao. 2003. Antibacterial activity of short
hydrophobic and basic-rich peptides. Am. J. Vet. Res. 64:1088–1092.
8. Crowhurst, K. A., and J. D. Forman-Kay. 2003. Aromatic and methyl NOEs
highlight hydrophobic clustering in the unfolded state of an SH3 domain.
Biochemistry 42:8687–8695.
24. Morrison, D. C., and D. M. Jacobs. 1976. Binding of polymyxin B to the lipid
A portion of bacterial lipopolysaccharides. Immunochemistry 13:813–818.
25. Naidu, S. S., U. Svensson, A. R. Kishore, and A. S. Naidu. 1993. Relationship
between antibacterial activity and porin binding of lactoferrin in Escherichia coli
and Salmonella typhimurium. Antimicrob. Agents Chemother. 37:240–245.
26. Nibbering, P. H., E. Ravensbergen, M. M. Welling, L. A. van Berkel, P. H.
van Berkel, E. K. Pauwels, and J. H. Nuijens. 2001. Human lactoferrin and
peptides derived from its N terminus are highly effective against infections
with antibiotic-resistant bacteria. Infect. Immun. 69:1469–1476.
27. Odell, E. W., R. Sarra, M. Foxworthy, D. S. Chapple, and R. W. Evans. 1996.
Antibacterial activity of peptides homologous to a loop region in human
lactoferrin. FEBS Lett. 382:175–178.
28. Porter, E. M., E. van Dam, E. V. Valore, and T. Ganz. 1997. Broad-spectrum
antimicrobial activity of human intestinal defensin 5. Infect. Immun. 65:
2396–2401.
29. Schibli, D. J., R. F. Epand, H. J. Vogel, and R. M. Epand. 2002. Tryptophan-
rich antimicrobial peptides: comparative properties and membrane interac-
tions. Biochem. Cell Biol. 80:667–677.
9. Elass-Rochard, E., A. Roseanu, D. Legrand, M. Trif, V. Salmon, C. Motas,
J. Montreuil, and G. Spik. 1995. Lactoferrin-lipopolysaccharide interaction:
involvement of the 28–34 loop region of human lactoferrin in the high-
affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochem. J.
312:839–845.
10. Ellison, R. T., III, T. J. Giehl, and F. M. LaForce. 1988. Damage of the outer
membrane of enteric gram-negative bacteria by lactoferrin and transferrin.
Infect. Immun. 56:2774–2781.
30. Stallmann, H. P., C. Faber, A. L. Bronckers, J. M. de Blieck-Hogervorst,
C. P. Brouwer, A. V. Amerongen, and P. I. Wuisman. 2005. Histatin and
lactoferrin derived peptides: Antimicrobial properties and effects on mam-
malian cells. Peptides 26:2355–2359.
31. Tanida, T., T. Okamoto, E. Ueta, T. Yamamoto, and T. Osaki. 2006. Anti-
microbial peptides enhance the candidacidal activity of antifungal drugs by
promoting the efflux of ATP from Candida cells. J. Antimicrob. Chemother.
57:94–103.
11. Faber, C., H. P. Stallmann, D. M. Lyaruu, U. Joosten, C. von Eiff, A. van
Nieuw Amerongen, and P. I. Wuisman. 2005. Comparable efficacies of the
antimicrobial peptide human lactoferrin 1–11 and gentamicin in a chronic
methicillin-resistant Staphylococcus aureus osteomyelitis model. Antimicrob.
Agents Chemother. 49:2438–2444.
12. Farnaud, S., A. Patel, E. W. Odell, and R. W. Evans. 2004. Variation in
antimicrobial activity of lactoferricin-derived peptides explained by structure
modelling. FEMS Microbiol. Lett. 238:221–226.
32. Viejo-Diaz, M., M. T. Andres, J. Perez-Gil, M. Sanchez, and J. F. Fierro.
2003. Potassium efflux induced by a new lactoferrin-derived peptide mim-
icking the effect of native human lactoferrin on the bacterial cytoplasmic
membrane. Biochemistry (Moscow) 68:217–227.
33. Vogel, H. J., D. J. Schibli, W. Jing, E. M. Lohmeier-Vogel, R. F. Epand, and
R. M. Epand. 2002. Towards a structure-function analysis of bovine lactof-
erricin and related tryptophan- and arginine-containing peptides. Biochem.
Cell Biol. 80:49–63.
13. Farnaud, S., C. Spiller, L. C. Moriarty, A. Patel, V. Gant, E. W. Odell, and
R. W. Evans. 2004. Interactions of lactoferricin-derived peptides with LPS
and antimicrobial activity. FEMS Microbiol. Lett. 233:193–199.
14. Goldman, M. J., G. M. Anderson, E. D. Stolzenberg, U. P. Kari, M. Zasloff,
and J. M. Wilson. 1997. Human beta-defensin-1 is a salt-sensitive antibiotic
in lung that is inactivated in cystic fibrosis. Cell 88:553–560.
34. Vorland, L. H. 1999. Lactoferrin: a multifunctional glycoprotein. APMIS
107:971–981.
35. Vorland, L. H., H. Ulvatne, J. Andersen, H. H. Haukland, O. Rekdal, J. S.
Svendsen, and T. J. Gutteberg. 1999. Antibacterial effects of lactoferricin B.
Scand. J. Infect. Dis. 31:179–184.
36. Wessolowski, A., M. Bienert, and M. Dathe. 2004. Antimicrobial activity of
arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters,
D-amino acid substitution and cyclization. J. Pept. Res. 64:159–169.
37. Yamauchi, K., M. Tomita, T. J. Giehl, and R. T. Ellison, 3rd. 1993. Anti-
bacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide frag-
ment. Infect. Immun. 61:719–728.
38. Zhang, G. H., D. M. Mann, and C. M. Tsai. 1999. Neutralization of endo-
toxin in vitro and in vivo by a human lactoferrin-derived peptide. Infect.
Immun. 67:1353–1358.
15. Hancock, R. E., and D. S. Chapple. 1999. Peptide antibiotics. Antimicrob.
Agents Chemother. 43:1317–1323.
16. Håversen, L., B. G. Ohlsson, M. Hahn-Zoric, L. A. Hanson, and I. Mattsby-
Baltzer. 2002. Lactoferrin down-regulates the LPS-induced cytokine produc-
tion in monocytic cells via NF-kappa B. Cell Immunol. 220:83–95.
17. Håversen, L. A., L. Baltzer, G. Dolphin, L. A. Hanson, and I. Mattsby-
Baltzer. 2003. Anti-inflammatory activities of human lactoferrin in acute
dextran sulphate-induced colitis in mice. Scand. J. Immunol. 57:2–10.