Communications
Iwamura, S. Watanabe, O. Muraoka, G. Tanabe, Tetrahedron
2000, 56, 4725 – 4731; e) T. Kataoka, H. Kinoshita, S. Kinoshita,
T. Iwamura, S. Watanabe, Angew. Chem. 2000, 112, 2448 – 2450;
Angew. Chem. Int. Ed. 2000, 39, 2358 – 2360.
ketone gave exclusively BH products in high yields (entries 1
and 2), and side products were not observed by H NMR
1
spectroscopy. This result remarkably contrasts previous find-
ings that reactions of a,b-unsaturated acyclic ketones with
aldehydes mediated by metal and non-metal halides resulted
in complex reaction mixtures.[7] Acrylates are normally very
unreactive in Lewis acid catalyzed BH reactions, and very low
to zero yields of coupling products are obtained.[6b,7c,7d]
Interestingly, our new methodology works very well for
both electron-poor and electron-rich aromatic aldehydes,
giving excellent yields of Baylis–Hillman products in only
10 min (entries 3–7). When acrylonitrile was employed,
reactions with aromatic aldehydes also gave high product
yields (entries 8 and 9).
[7] a) S. Uehira, Z. Han, H. Shinokubo, K. Oshima, Org. Lett. 1999,
1, 1383 – 1385; b) M. Shi, J.-K. Jiang, Tetrahedron 2000, 56, 4793 –
4797; c) M. Shi, J.-K. Jiang, Y.-S. , Feng, Org. Lett. 2000, 2, 2397 –
2400; d) M. Shi, Y.-S. Feng, J. Org. Chem. 2001, 66, 406 – 411;
e) G. Li, J. Gao, H.-X. Wei, M. Enright, Org. Lett. 2000, 2, 61 7 –
620.
[8] a) J. G. Verkade, Top. Curr. Chem. 2003, 233, 1– 44, and
references therein; b) P. B. Kisanga, J. G. Verkade, Tetrahedron
Reports, 2003, in press.
[9] P. B. Kisanga, J. G. Verkade, J. Org. Chem. 2002, 67, 426 – 430.
[10] An excess of a,b-unsaturated ketone required for complete
consumption of aldehyde and optimized yields.
[11] Typical procedure for the BH reaction: To a solution of aldehyde
(1.0 mmol), activated alkene (3.0 mmol), and 2a (0.05 mmol) in
anhydrous dichloromethane (2.0 mL) was added TiCl4
(1.0 mmol) under an Ar atmosphere at room temperature. The
mixture was stirred for 10 min and then it was quenched with
saturated aqueous NaHCO3 (5.0 mL). The inorganic precipitate
was filtered through Celite. The organic phase was dried over
Na2SO4 and concentrated in vacuo to give the crude product,
which was purified by column chromatography on silica gel
(ethyl acetate/hexane 1:3).
[12] S. K. Xi, H. Schmidt, C. Lensink, S. Kim, D. Wintergrass, L. M.
Jacobson, J. G. Verkade, Inorg. Chem. 1990, 29, 2214 – 2220.
[13] L. M. Walsh, C. L. Winn, J. M. Goodman, Tetrahedron Lett.
2002, 43, 8219 – 8222.
[14] Under the same conditions the reaction of methyl vinyl ketone
with p-nitrobenzaldehyde gave the BH adduct in 75% yield.
[15] Attempts to detect this intermediate by NMR spectroscopy have
thus far failed.
In summary, we have developed a highly active and
selective catalyst system (2a/TiCl4) for the BH reaction,
which to our knowledge is the most generally effective one so
far described. Our protocol is applicable to activated alkenes
such as enones (including less reactive b-substituted deriva-
tives), acrylonitrile, and acrylates. We believe that Nax!P
intrabridgehead interaction in 2a may play an important role
in stabilizing a 2a/activated alkene/TiCl4 intermediate in the
reaction pathway. Further development of this methodology,
including its application to asymmetric reactions using chiral
proazaphosphatrane sulfides, is in progress.
Received: June 26, 2003 [Z52233]
Keywords: Baylis–Hillman reaction · heterocycles · Lewis bases ·
.
titanium
[16] Electron-rich aromatic aldehydes such as anisaldehyde do not
provide BH adducts when
a more sterically hindered 3-
substituted cyclohex-2-en-1-one is used.
[1] For recent reviews see: a) D. Basavaiah, A. J. Rao, T. Satyanar-
ayana, Chem. Rev. 2003, 103, 811 – 891, and references therein;
b) P. Langer, Angew. Chem. 2000, 112, 3177 – 3180; Angew.
Chem. Int. Ed. 2000, 39, 3049 – 3052.
[2] a) S. Matsumoto, Y. Okubo, K. Mikami, J. Am. Chem. Soc. 1998,
120, 4015 – 4016; b) Y. Fort, M. C. Berthe, P. Caubere, Tetrahe-
dron 1992, 48, 6371– 6384.
[3] a) C. Yu, B. Liu, L. Hu, J. Org. Chem. 2001, 66, 5413 – 5418;
b) W.-D. Lee, K.-S. Yang, K. Chen, Chem. Commun. 2001, 1 61 2 –
1613; c) J. Cai, Z. Zhou, G. Zhao, C. Tang, Org. Lett. 2002, 4,
4723 – 4725; d) V. K. Aggarwal, D. K. Dean, A. Mereu, R.
Williams, J. Org. Chem. 2002, 67, 510 – 514; e) C. Yu, L. Hu, J.
Org. Chem. 2002, 67, 219 – 223; f) V. K. Aggarwal, I. Emme, S. Y.
Fulford, J. Org. Chem. 2003, 68, 692 – 700.
[4] a) W. Pei, H.-X. Wei, G. Li, Chem. Commun. 2002, 1856 – 1857;
b) W. Pei, H.-X. Wei, G. Li, Chem. Commun. 2002, 2412 – 2413;
c) D. Balan, H. Adolfsson, J. Org. Chem. 2002, 67, 2329 – 2334;
d) V. K. Aggarwal, A. Mereu, G. J. Tarver, R. McCague, J. Org.
Chem. 1998, 63, 7183 – 7189; e) K. Yang, W. Lee, J. Pan, K. Chen,
J. Org. Chem. 2003, 68, 915 – 919; f) T. Iwamura, M. Fujita, T.
Kawakita, S. Kinoshita, S. Watanabe, T. Kataoka, Tetrahedron
2001, 57, 8455 – 8462; g) M. Shi, C. Wang, Helv. Chim. Acta 2002,
85, 841– 846.
[5] a) G. Li, H.-X. Wei, J. J. Gao, T. D. Caputo, Tetrahedron Lett.
2000, 41, 1– 5; b) A. Patra, S. Batra, B. S. Joshi, R. Roy, B.
Kundu, A. P. Bhaduri, J. Org. Chem. 2002, 67, 5783 – 5788.
[6] a) T. Kataoka, T. Iwama, S. Tsujiyama, Chem. Commun. 1998,
197 – 198; b) T. Kataoka, T. Iwama, S. Tsujiyama, T. Iwamura, S.
Watanabe, Tetrahedron 1998, 54, 11813 – 11824; c) T. Iwama, H.
Kinoshita, T. Kataoka, Tetrahedron Lett. 1999, 40, 3741– 3744;
d) T. Kataoka, H. Kinoshita, T. Iwama, S. Tsujiyama, T.
5056
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 5054 –5056