F a cile Syn th esis of r-Su bstitu ted Acr yla te Ester s
Bunda Hin, Pavel Majer, and Takashi Tsukamoto*
Guilford Pharmaceuticals, Inc., 6611 Tributary Street, Baltimore, Maryland 21224
tsukamotot@guilfordpharm.com
Received J une 25, 2002
Treatment of 5-monosubstituted Meldrum’s acids with dimethylmethyleneimmonium iodide
(Eschenmoser’s iodide salt) in methanol gives R-substituted acrylate methyl esters in good yields.
Easy access to 5-monosubstituted Meldrum’s acids allowed us to synthesize a wide variety of
R-substituted acrylate methyl esters. The reaction conditions are mild and tolerate many functional
groups commonly used in organic synthesis; thus, this new method has potential as an alternative
to conventional preparative methods for R-substituted acrylate esters.
SCHEME 1
In tr od u ction
Utility of R-substituted acrylate esters as synthetic
intermediates has been well demonstrated by the 1,4-
addition reaction of various types of nucleophilic reagents
leading to several biologically important compounds. For
example, 1,4-addition reactions of phosphorus-based nu-
cleophiles to R-substituted acrylate esters have been
extensively used in the synthesis of pseudopeptides
including inhibitors of metalloproteases1-3 and ATP-
dependent ligases.4-6 One of the most common methods
for the acrylate synthesis involves a Mannich reaction
of R-monosubstituted malonic acid half esters 3 (Scheme
1).7 Although the reaction generally gives the products
4 in good yields, preparation of the starting materials 3
often suffers from low yield due to difficulties in monoalky-
lation of malonate diesters 1 and/or partial saponification
of the monosubstituted malonate diesters 2. It has been
described, however, that the R-monosubstituted malonic
acid esters 3 can be readily obtained by heating an
alcoholic (phenol,8 methanol,9 ethanol,10,11 benzyl alco-
hol,12,13 or tert-butyl alcohol14) solution of 5-monosubsti-
tuted Meldrum’s acids 5. Recent progress in the practical
synthesis of 5-monosubstituted Meldrum’s acids15-23
should enhance the utility of this alcoholysis reaction as
a new route to R-monosubstituted malonic acid half
esters. Since the alcoholysis of 5-monosubstituted Mel-
drum’s acids 5 proceeds under mild conditions, this
reaction could be combined with the subsequent Mannich
reaction. In this paper, we describe a one-pot procedure
for the preparation of R-substituted acrylate esters from
5-monosubstituted Meldrum’s acids.
(1) Caldwell, C. G.; Sahoo, S. P.; Polo, S. A.; Eversole, R. R.; Lanza,
T. J .; Mills, S. G.; Niedzwiecki, L. M.; Izquierdo-Martin, M.; Chang,
B. C.; Harrison, R. K.; Kuo, D. W.; Lin, T.-Y.; Stein, R. L.; Durette, P.
L.; Hagmann, W. K. Bioorg. Med. Chem. Lett. 1996, 6, 323-328.
(2) Vassiliou, S.; Mucha, A.; Cuniasse, P.; Georgiadis, D.; Lucet-
Levannier, K.; Beau, F.; Kannan, R.; Murphy, G.; Knauper, V.; Rio,
M. C.; Basset, P.; Yiotakis, A.; Dive, V. J . Med. Chem. 1999, 42, 2610-
2620.
(12) Chorev, M.; Rubini, E.; Gilon, C.; Wormser, U.; Selinger, Z. J .
Med. Chem. 1983, 26, 129-135.
(13) Guichard, G.; Connan, F.; Graff, R.; Ostankovitch, M.; Muller,
S.; Guillet, J . G.; Choppin, J .; Briand, J . P. J . Med. Chem. 1996, 39,
2030-2039.
(14) Nemes, C.; J eannin, L.; Sapi, J .; Laronze, M.; Seghir, H.; Auge,
F.; Laronze, J .-Y. Tetrahedron 2000, 56, 5479-5492.
(15) Nutaitis, C. F.; Schultz, R. A.; Obaza, J .; Smith, F. X. J . Org.
Chem. 1980, 45, 4606-4608.
(16) Rosowsky, A.; Forsch, R.; Uren, J .; Wick, M.; Kumar, A. A.;
Freisheim, J . H. J . Med. Chem. 1983, 26, 1719-1724.
(17) Smrcina, M.; Majer, P.; Majerova, E.; Guerassina, T. A.;
Eissenstat, M. A. Tetrahedron 1997, 53, 12867-12874.
(18) Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Tetrahedron Lett.
1978, 1759-1762.
(19) Hrubowchak, D. M.; Smith, F. X. Tetrahedron Lett. 1983, 24,
4951-4954.
(20) Chan, C.-C.; Huang, X. Synthesis 1984, 224-225.
(21) Huang, X.; Xie, L. Synth. Commun. 1986, 16, 1701-1707.
(22) Toth, G.; Koever, K. E. Synth. Commun. 1995, 25, 3067-3074.
(23) List, B.; Castello, C. Synlett 2001, 1687-1689.
(3) J ackson, P. F.; Cole, D. C.; Slusher, B. S.; Stetz, S. L.; Ross, L.
E.; Donzanti, B. A.; Trainor, D. A. J . Med. Chem. 1996, 39, 619-622.
(4) Parsons, W. H.; Patchett, A. A.; Bull, H. G.; Schoen, W. R.; Taub,
D.; Davidson, J .; Combs, P. L.; Springer, J . P.; Gadebusch, H.;
Weissberger, B.; Valiant, M. E.; Mellin, T. N.; Busch, R. D. J . Med.
Chem. 1988, 31, 1772-1778.
(5) Valiaeva, N.; Bartley, D.; Konno, T.; Coward, J . K. J . Org. Chem.
2001, 66, 5146-5154.
(6) Tokutake, N.; Hiratake, J .; Katoh, M.; Irie, T.; Kato, H.; Oda, J .
Bioorg. Med. Chem. 1998, 6, 1935-1953.
(7) Stetter, H.; Kuhlmann, H. Synthesis 1979, 29-30.
(8) J unek, H.; Ziegler, E.; Herzog, U.; Kroboth, H. Synthesis 1976,
332-334.
(9) Chen, Y.-S.; Lawton, R. G. Tetrahedron Lett. 1997, 38, 5785-
5788.
(10) Boisbrun, M.; J eannin, L.; Toupet, L.; Laronze, J .-Y. Eur. J .
Org. Chem. 2000, 3051-3058.
(11) Boisbrun, M.; Kovacs-Kulyassa, A.; J eannin, L.; Sapi, J . T., Loic;
Laronze, J .-Y. Tetrahedron Lett. 2000, 41, 9771-9776.
10.1021/jo026101s CCC: $22.00 © 2002 American Chemical Society
Published on Web 09/24/2002
J . Org. Chem. 2002, 67, 7365-7368
7365