containing tridentate ligands, and its application in the
synthesis of a new-generation model compound (4).
Commercially available 4-iodo-1-tritylimidazole (5)10 can
undergo magnesium-iodine exchange with a Grignard
reagent to give selectively a 4-magnesioimidazole intermedi-
ate (6), which then attacks carbonyl compounds. This
protocol has been used to synthesize not only monoimidazole
compounds of pharmaceutical significance11 but also a wide
range of 4-imidazolyl-containing multidentate ligands for
biomimetic studies.12 To our knowledge there is no previous
study using 5 as a key synthon to make mono-4-imidazolyl-
containing tridentate ligands (7) which can be deprotected
and further functionalized through the N-1 position. As a
part of our active-site model studies, we set forth to study
the reaction of 4-magnesio-1-tritylimidazole (6) with bisimi-
dazolyl and bispyridyl ketones (8)13 (Scheme 1).
Scheme 1
Figure 1.
clean electroreduction of O2 to H2O. Recently, Naruta et al.8
reported a new active-site model compound (3) in which a
trisimidazolylmethane known to give stable complexes with
copper(I) ions9 was combined with a porphyrin through an
amide linkage. However, the synthesis of trisimidazolyl-
methane was inefficient because a tedious protection and a
low-yield Pd(PPh3)4-catalyzed coupling reaction were em-
ployed. Furthermore, there was no built-in proximal base as
in CcO. In our continuing efforts to design and synthesize
more congruent structural models of the CcO active site, we
have focused on developing efficient strategies to construct
fully covalently linked model compounds with both a distal
trisimidazolyl Cu-binding site and a promixal base. Herein
we report a facile method to synthesize mono-4-imidazolyl-
As shown in Table 1, 4-magnesio-1-tritylimidazole (6) (1.2
equiv) which was derived from 5 (1.2 equiv) and EtMgBr
(1.2 equiv) in CH2Cl2 reacted with bis(1-methyl-2-imidazo-
lyl)ketone (8a) (1.0 equiv) to give the trisimidazolylcarbinol
7a in 67% yield. Interestingly, when the more lipophilic
bisimidazolyl ketones 8b and 8c were used, the yield of the
reaction increased to 91% and 99%, respectively. Bispyridyl
ketone (8d) can also react with 6 to form a tridentate ligand
(7d) featuring pyridine donors in 84% yield. However, when
the C-4 or C-5 position on the pyridine rings of 8 was
substituted by methyl group (8e or 8f), the yield of this
reaction decreased dramatically to 55% and 46%, respec-
tively. No desired addition product was obtained when bis-
(3-methyl-2-pyridyl)ketone or bis(6-methyl-2-pyridyl)ketone
was treated with 6, probably because of the interference of
steric hindrance or an acidic methyl group adjacent to
nitrogen in the corresponding ketone. We also found that
the reactivities of the bisimidazolyl ketones (8a-c) are
relatively higher than those of the bispyridyl ketones (8d-
f) in this reaction. All of these tripodal ligands are not only
(4) (a) Collman, J. P.; Brauman, J. I.; Doxsee, K. M.; Halbert, T. R.;
Bunnenberg, E.; Linder, R. E.; LaMar, G. N.; Gaudio, J. D.; Lang, G.;
Spartalian, K. J. Am. Chem. Soc. 1980, 102, 4182. (b) Young, R.; Chang,
C. K. J. Am. Chem. Soc. 1985, 107, 898. (c) Baeg, J.-O.; Holm, R. H.
Chem. Commun. 1998, 571. (d) Collman, J. P.; Bro¨ring, M.; Fu, L.; Rapta,
M.; Schwenninger, R.; Straumanis, A. J. Org. Chem. 1998, 63, 8082. (e)
Collman, J. P.; Bro¨ring, M.; Fu, L.; Rapta, M.; Schwenninger, R. J. Org.
Chem. 1998, 63, 8084. (f) Collman, J. P.; Rapta, M.; Bro¨ring M.; Raptova,
L.; Schwenninger, R.; Boitrel, B.; Fu, L.; L’Her, M. J. Am. Chem. Soc.
1999, 121, 1387.
(5) Sasaki, T.; Naruta, Y. Chem. Lett. 1995, 663.
(6) (a) Obias, H. V.; van Strijdonck, G. P. F.; Lee, D.-H.; Ralle, M.;
Blackburn, N. J.; Karlin, K. D. J. Am. Chem. Soc. 1998, 120, 9696. (b)
Sasaki, T.; Nakamura, N.; Naruta, Y. Chem. Lett. 1998, 351. (c) Kopf, M.-
A.; Karlin, K. D. Inorg. Chem. 1999, 28, 4922
(10) It is now available from SynChem, Inc., Chicago, IL 60612 (Chem.
Eng. News 1999, 77(36), 49), and also it can be easily prepared in large
scale according to the following references: (a) Bensusan, H. B.; Naidu,
M. S. R. Biochemistry 1967, 6, 12. (b) Kirk, K. L. J. Heterocycl. Chem.
1985, 32, 57. (c) Palmer, B. D.; Denny, W. A. J. Chem. Soc., Perkin Trans.
1 1989, 95.
(7) (a) Collman, J. P.; Herrmann, P. C.; Boitrel, B.; Zhang, X.;
Eberspacher, T. A.; Fu, L.; Wang, J.; Rousseau, D. L.; Williams, E. R. J.
Am. Chem. Soc. 1994, 116, 9783. (b) Collman, J. P.; Zhang, X.; Herrmann,
P. C.; Uffelman, E. S.; Boitrel, B.; Straumanis, A.; Brauman, J. I. J. Am.
Chem. Soc. 1994, 116, 2681. (c) Collman, J. P.; Fu, L.; Herrmann, P. C.;
Zhang, X. Science 1997, 275, 949. (d) Collman, J. P.; Boitrel, B.; Fu, L.;
Galanter, J.; Straumanis, A.; Rapta, M. J. Org. Chem. 1997, 62, 2308. (e)
Andrioletti, B.; Boitrel, B.; Guilard, R. J. Org. Chem. 1998, 63, 1312. (f)
Collman, J. P.; Schwenninger, R.; Rapta, M.; Bro¨ring, M.; Fu, L. Chem.
Commun. 1999, 137. (g) Ricard, D.; Andrioletti, B.; L’Her, M.; Boitrel, B.
Chem. Commun. 1999, 1523.
(11) Turner, R. M.; Lindell, S. D.; Ley, S. V. J. Org. Chem. 1991, 56,
5739.
(12) Collman, J. P.; Zhong, M.; Wang, Z. Org. Lett. 1999, 1, 949.
(13) (a) Newkome, G. R.; Kiefer, G. E.; Frere, Y. A.; Onishi, M.; Gupta,
V. K.; Fronczek, F. R. Organometallics 1986, 5, 348. (b) Gorun, S. M.;
Papaefthymiou, G. C.; Frankel, R. B.; Lippard, S. J. J. Am. Chem. Soc.
1987, 109, 4244. (c) McMaster, J.; Beddoes, R. L.; Collison, D.; Eardley,
D. R.; Helliwell, M.; Garner, C. D. Chem. Eur. J. 1996, 2, 685. (d) Elgafi,
S.; Field, L. D.; Messerle, B. A.; Hambley, T. W.; Turner, P. J. Chem.
Soc., Dalton Trans. 1997, 2341.
(8) Tani, F.; Matsumoto, Y.; Tachi, Y.; Sasaki, T.; Naruta, Y. Chem.
Commun. 1998, 1731.
(9) Sorrell, T. N.; Borovik, A. S. J. Am. Chem. Soc. 1987, 109, 4255.
2122
Org. Lett., Vol. 1, No. 13, 1999