COMMUNICATIONS
Table 1. Selected physical and spectroscopic data of compounds 2, 30, and 33.
2: Rf 0.60 (silica, 80% EtOAc in hexanes); IR (thin film): nÄmax 3495,
3331, 2928, 2951, 2884, 1743, 1678, 1614, 1508, 1455, 1373, 1243, 1091, 1049,
844, 791 cm 1; 1H NMR (500 MHz, CDCl3): d 8.54 (s, 1H, NH), 7.27 (d,
J 8.5 Hz, 2H, PMB), 6.87 (d, J 8.5 Hz, 2H, PMB), 6.47 (d, J 3.7 Hz,
1H, E-1), 5.28 (dd, J 10.6, 3.7 Hz, 1H, E-2), 4.99 (s, 1H, D-2), 4.81 (s, 1H,
D1), 4.81 and 4.56 (AB, J 11.0 Hz, 2H, CH2Ar), 4.16 ± 4.12 (m, 2H, E-3,
E-5), 3.79 (s, 3H, OMe (PMB)), 3.59 (s, 3H, OMe (E-4)), 3.57 (brs, 1H,
E-4), 3.42 (dq, J 9.6, 5.9 Hz, 1H, D-5), 3.32 (d, J 9.6 Hz, 1H, D-4), 2.14
(s, 3H, OAc), 2.00 (s, 3H, OAc), 1.37 (s, 3H, Me (D-3)), 1.35 (d, J 6.0 Hz,
3H, D-6), 1.26 (d, J 6.6 Hz, 3H, E-6); 13C NMR (125 MHz, CDCl3): d
170.1, 170.0, 161.1, 159.0, 130.5, 129.8, 114.4, 98.5, 94.3, 91.6, 82.5, 81.7, 76.1,
75.0, 74.3, 71.0, 69.4, 65.5, 61.5, 55.5, 30.2, 21.2, 21.0, 20.3, 18.2, 16.3
33: Rf 0.32 (silica, 60% Et2O in hexanes); aD22
19.5 (c 0.20, CHCl3);
IR (thin film): nÄmax 2955, 2919, 2861, 1737, 1602, 1543, 1455, 1384, 1255,
1
1108, 1067, 1038, 838, 779 cm 1; H NMR (600 MHz, CDCl3): d 7.57 (d,
J 7.1 Hz, 2H, ArH), 7.43 ± 7.31 (m, 8H, ArH), 6.29 (d, J 1.8 Hz, ArH
(A2)), 6.16 (d, J 1.8 Hz, ArH(A2)), 5.35 (dt, J 9.9, 9.9, 5.5 Hz, 1H, H-4),
5.18 (s, 1H, OCH2O), 5.07 (brs, 1H, F-1), 5.06 (s, 1H, OCH2O), 5.05 and
5.02 (AB, J 10.2 Hz, 2H, CH2Ar), 5.00 (s, 1H, G-1), 4.95 (dd, J 4.6,
1.4 Hz, 1H, A-1), 4.88 (t, J 9.4 Hz, 1H, B-4), 4.86 (s, 1H, D-1), 4.75 (brd,
J 9.8 Hz, 1H, B-1), 4.68 and 4.57 (AB, J 11.0 Hz, 2H, CH2Ar), 4.39 (dt,
J 10.5, 10.5, 4.8 Hz, 1H, G-4), 4.23 (brs, 1H, G-2), 4.17 (dd, J 11.4,
5.7 Hz, 1H, H-5), 4.14 (brs, 1H, F-3), 4.09 (s, 1H, D-2), 4.07 (d, J 7.4 Hz,
1H, E-1), 4.04 (dd, J 9.2, 4.4 Hz, 1H, G-5), 4.01 (dd, J 10.1, 2.6 Hz, 1H,
G-3), 3.97 (dd, J 10.1, 9.2 Hz, 1H, G-5), 3.93 (t, J 9.6 Hz, 1H, H-3), 3.89
(brt, J 8.3 Hz, 1H), 3.86 ± 3.80 (m, 5H, B-3, C-3, D-4, E-5, F-4), 3.82 (s,
3H, OMe (A1)), 3.72 (dq, J 6.2, 4.0 Hz, 1H, D-5), 3.65 (dd, J 9.2, 9.2 Hz,
1H, E-2), 3.64 (d, J 9.7 Hz, 1H, A-4), 3.59 (t, J 11.0 Hz, 1H, H-5), 3.59
(d, J 9.2 Hz, 1H, H-2), 3.56 (s, 3H, OMe (E-4)), 3.53 ± 3.50 (m, 4H, C-5),
3.48 ± 3.46 (m, 1H, A-5), 3.47 (dd, J 9.2, 3.1 Hz, 1H, E-3), 3.43 (t, J
3.5 Hz, 1H, F-2), 3.39 (s, 3H, OMe (F-2)), 3.35 (s, 3H, OMe (A-4)), 3.34 ±
3.33 (m, 2H, B-5, F-5), 3.30 (s, 3H, OMe), 2.51 (dd, J 12.5, 8.5 Hz, 1H,
C-2), 2.45 (dd, J 13.7, 4.9 Hz, 1H, A-2), 2.38 (s, 3H, Me (A1), 2.29 (brdd,
J 12.4, 8.6 Hz, 1H, B-2), 2.26 (s, 3H, Me (A2)), 2.01 (dd, J 13.7, 1.6 Hz,
1H, A-2), 1.90 (t, J 12.1 Hz, 1H, C-2), 1.70 ± 1.66 (m, 1H, B-2), 1.68 (s,
3H, Me, A-3), 1.34 (s, 3H, Me, D-3), 1.32 (d, J 6.4 Hz, 3H, B-6), 1.31 (d,
J 6.2 Hz, 3H, D-6), 1.28 (d, J 6.6 Hz, 3H, E-6), 1.26 (d, J 6.8 Hz, 3H,
C-6), 0.96 (s, 9H, tBuSi), 0.95 (s, 9H, tBuSi), 0.94 (s, 9H, tBuSi), 0.90 (s, 9H,
tBuSi), 0.89 (s, 18H, tBuSi), 0.83 (d, J 6.2 Hz, 3H, Me (A-6)), 0.21 (s, 6H,
MeSi), 0.19 (s, 3H, MeSi), 0.18 (s, 6H, MeSi), 0.14 (s, 3H, MeSi), 0.10 (s,
6H, MeSi), 0.10 (s, 3H, MeSi), 0.09 (s, 3H, MeSi), 0.07 (s, 3H, MeSi), 0.06
(s, 3H, MeSi); 13C NMR (125 MHz, CDCl3): d 167.1, 165.6, 157.3, 153.9,
152.3, 153.2, 138.7, 137.9, 135.9, 134.8, 128.6, 128.6, 128.5, 127.5, 126.4, 126.0,
121.7, 120.1, 119.0, 119.0, 114.9,108.5, 103.5, 102.3, 100.2, 97.2, 96.4, 92.6,
89.9, 84.3, 82.8, 82.4, 81.5, 81.1, 79.0, 77.3, 76.1, 75.1, 74.9, 74.1, 73.5, 72.8,
72.4, 71.8, 71.6, 71.1, 70.5, 70.4, 70.0, 69.1, 68.3, 66.2, 63.3, 63.0, 62.5, 62.0,
60.8, 58.4, 46.2, 40.1, 38.8, 36.4, 29.7, 26.2, 26.0, 25.8, 25.6, 25.6, 19.8, 19.3,
19.2, 18.4, 18.3, 18.3, 18.1, 18.1, 18.0, 18.0, 17.6, 16.2, 11.6, 3.7, 3.8, 3.9,
4.2, 4.3, 4.4, 4.4, 4.5, 4.5, 4.9, 5.0, 5.2; MS (electrospray
30: Rf 0.27 (silica, 40% Et2O in hexanes); aD22
29.1 (c 0.10, CHCl3);
IR (thin film): nÄmax 3495, 2955, 2919, 2861, 1737, 1602, 1467, 1361, 1255,
1
1073, 838, 779 cm
;
1H NMR (600 MHz, CDCl3): d 6.29 (d, J 1.7 Hz,
1H, ArH (A2)), 6.16 (d, J 1.8 Hz, 1H, ArH (A2)), 5.33 (dt, J 10.1, 10.1,
5.6 Hz, 1H, H-4), 5.18 (s, 1H, OCH2O), 5.06 (s, 1H, OCH2O), 5.05 (brs,
1H, F-1), 5.01 (s, 1H, G-1), 4.68 (s, 1H, D-1), 4.39 (dt, J 10.3, 10.3, 2.5 Hz,
1H, G-4), 4.24 (brs, 1H, G-2), 4.17 (dd, J 11.1, 5.4 Hz, 1H, H-5), 4.12
(brs, 1H, F-3), 4.08 (d, J 7.4 Hz, 1H, E-1), 4.05 (dd, J 9.4, 4.8 Hz, 1H,
G-5), 4.00 (dd, J 10.1, 2.2 Hz, 1H, G-3), 3.96 (dd, J 9.4, 9.4 Hz, 1H,
G-5), 3.95 (t, J 9.4 Hz, 1H, H-3), 3.89 (dd, J 8.3 Hz, 1H), 3.84 (brs, 1H),
3.78 ± 3.76 (m, 1H), 3.77 (s, 1H, D-2), 3.64 (dd, J 8.0, 8.0 Hz, 1H, E-2),
3.59 (dd, J 10.0, 10.0 Hz, 1H, H-5), 3.58 (d, J 9.5 Hz, 1H, H-2), 3.53 (s,
3H, OMe (E-4)), 3.52 ± 3.51 (m, 1H, D-5 or E-5), 3.49 ± 3.37 (m, 4H, F-2),
3.40 (s, 3H, OMe (F-2)), 3.33 ± 3.29 (m, 2H, D-5 or E-5), 3.30 (s, 3H, OMe
(F-6)), 2.44 (s, 1H, OH), 2.24 (s, 3H, Me (A2)), 1.93 (brs, 1H, OH), 1.29 (d,
J 5.9 Hz, 3H, D-6 or E-6), 1.27 (d, J 6.5 Hz, 3H, D-6 or E-6), 1.16 (s,
3H, Me (D-3)), 0.96 (s, 9H, tBuSi), 0.95 (s, 9H, tBuSi), 0.92 (s, 9H, tBuSi),
0.90 (s, 9H, tBuSi), 0.90 (s, 9H, tBuSi), 0.89 (s, 9H, tBuSi), 0.28 (s, 3H,
MeSi), 0.21 (s, 3H, MeSi), 0.18 (s, 3H, MeSi), 0.18 (s, 3H, MeSi), 0.14 (s,
3H, MeSi), 0.10 (s, 3H, MeSi), 0.10 (s, 3H, MeSi), 0.10 (s, 3H, MeSi), 0.09
(s, 3H, MeSi), 0.07 (s, 3H, MeSi), 0.07 (s, 3H, MeSi), 0.07 (s, 3H, MeSi);
13C NMR (125 MHz, CDCl3): d 167.4, 157.3, 153.9, 137.9, 119.0, 118.9,
114.9, 108.4, 103.5, 101.6, 97.2, 96.4, 84.8, 82.4, 81.1, 77.3, 76.7, 76.4, 75.1,
73.9, 72.7, 71.3, 70.6, 70.5, 70.0, 69.5, 65.8, 63.3, 63.0, 62.4, 58.4, 29.3, 28.0,
25.8, 25.6, 19.8, 18.4, 18.2, 18.1, 18.0, 17.1, 16.3, 15.3, 3.4, 3.7, 3.9, 4.2,
4.3, 4.4, 4.6, 4.9, 4.9, 5.0, 5.2; HR-MS (FAB): calcd for
ionization): calcd for C120H193O38Cs [M Cs ]: 2496/2497, found: 2498/
2499
C77H144O25Si6Na [M Na ]: 1659.8509, found: 1659.8452
usual criteria (TLC, 1H NMR, 13C NMR, IR, MS, a2D2 with an
authentic sample.[12]
phase synthesis, combinatorial chemistry, and chemical biol-
ogy studies.[16]
The reported total synthesis of everninomicin 13,384-1 (1)
constituted an adventurous journey during which we have
demonstrated the power of novel synthetic reactions both
from our own and other laboratories. Most notable of these
methods are the 1,2-phenylthio[10] and the 1,2-phenylseleno
migrations on carbohydrate templates and their use in
stereocontrolled glycosidation reactions; the tin acetal based
stereocontrolled construction of 1 !1'-disaccharides;[13] the
use of acyl fluorides for the formation of sterically hindered
esters; the SinayÈ orthoester protocol formation;[11] the sulf-
oxide-based b-mannoside forming glycosidation by Kahne
et al.;[3, 4] the trichloroacetimidate glycosidation method of
Schmidt and Michel;[14] the glycosyl fluoride methodology of
Mukaiyama et al.;[15] and the tin acetal technology[7] for
differentiating 1,2-diols. Furthermore, a great deal of knowl-
edge regarding selectivity in manipulating protective groups
was gathered and considerable light was shed on conforma-
tional effects on selective functionalization of carbohydrate
templates. Most importantly and as a result of this synthesis,
the stage is now set for further advances in the antibiotics
field, including semisynthesis of designed analogues, solid-
Received: August 6, 1999 [Z13843IE]
German version: Angew. Chem. 1999, 111, 3535 ± 3540
Keywords: antibiotics ´ carbohydrates ´ everninomicin ´
glycosylations ´ total synthesis
[1] K. C. Nicolaou, H. J. Mitchell, H. Suzuki, R. M. Rodríguez, O.
Baudoin, K. C. Fylaktakidou, Angew. Chem. 1999, 111, 3523 ± 3528;
Angew. Chem. Int. Ed. 1999, 38, 3334 ± 3339.
[2] K. C. Nicolaou, R. M. Rodríguez, K. C. Fylaktakidou, H. Suzuki, H. J.
Mitchell, Angew. Chem. 1999, 111, 3529 ± 3534; Angew. Chem. Int. Ed.
1999, 38, 3340 ± 3345.
[3] D. Kahne, S. Walker, Y. Cheng, D. V. Engen, J. Am. Chem. Soc. 1989,
111, 6881 ± 6882.
[4] D. Crich, S. Sun, J. Am. Chem. Soc. 1998, 120, 435 ± 436.
Á
[5] M. Trumtel, P. Tavecchia, A. Veyrieres, P. SinayÈ, Carbohydr. Res. 1990,
202, 257 ± 275.
[6] T. Oshitar, M. Shibasaki, T. Yoshizawa, M. Tomita, K. Takao, S.
Kobayashi, Tetrahedron, 1997, 53, 10993 ± 11006.
[7] For a review on the chemistry of tin-containing intermediates in
carbohydrate chemistry, see T. B. Grindley, Adv. Carbohydr. Chem.
Biochem. 1998, 53, 16 ± 142.
Angew. Chem. Int. Ed. 1999, 38, No. 22
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3822-3349 $ 17.50+.50/0
3349