Notes and references
† Selected data for 10: shining black crystals, mp 229–230 °C (from
CH2Cl2–hexane); dH(CDCl3) 8.30–8.25 (m, 2H), 8.07 (s, 2H), 7.80–7.77
(m, 2H), 7.73–7.68 (m, 2H), 7.65–7.60 (m, 2H), 7.40–7.35 (m, 4H),
2.82–2.72 (m, 4H), 1.64–1.52 (m, 4H), 1.38–1.22 (m, 12H), 0.83 (t, 6H, J
6.8); lmax(CH2Cl2)/nm (lg e) 348 (4.58), 428 (4.53). For 14: orange prisms,
mp 178–179 °C (from CH2Cl2–hexane); dH(CDCl3) 9.70 (s, 1H), 7.65–7.56
(m, 4H), 7.33–7.30 (m, 4H), 2.84–2.74 (m, 4H), 2.43 (s, 3H), 1.63–1.53 (m,
4H), 1.40–1.25 (m, 12H), 0.87 (t, 6H, J 6.4).
‡ Crystal data for 10: C44H40O2S6, M = 793.1, T = 120 K, triclinic, space
¯
group P1 (No. 2), a = 9.925(2), b = 12.940(3), c = 15.319(5) Å, a =
94.16(1), b = 94.13(1), g = 99.06(1)°, U = 1930.8(9) Å3, Z = 2, Dc
=
1.36 g cm23, 13240 reflections (6762 unique), R = 0.039 [4525 data, I >
2s(I)], wR(F2) = 0.086. For 14: C34H38OS6, M = 655.0, T = 120 K,
¯
triclinic, space group P1 (No. 2), a = 15.208(3), b = 16.298(3), c =
16.510(3) Å, a = 111.95(1), b = 95.52(1), g = 113.86(1)°, U = 3320(1)
Å3, Z = 4, Dc = 1.31 g cm23, 25912 reflections (12113 unique), R = 0.042
[8781 data, I
> = 0.096 (Mo-Ka radiation). CCDC
2s(I)], wR(F2)
graphic data in .cif format.
Fig. 1 Molecular structure of 10.
1 (a) Y. Yamashita, Y. Kobayashi and T. Miyashi, Angew. Chem., Int. Ed.
Engl., 1989, 28, 1052; (b) M. R. Bryce, A. J. Moore, M. Hasan, G. J.
Ashwell, A. T. Fraser, W. Clegg, M. B. Hursthouse and A. I. Karaulov,
Angew. Chem., Int. Ed. Engl., 1990, 29, 1450; (c) S. Triki, L. Ouahab,
D. Lorcy and A. Robert, Acta Crystallogr., Sect . C, 1993, 49, 1189; (d)
Y. Yamashita and M. Tomura, J. Mater. Chem., 1998, 8, 1933.
2 M. A. Herranz, N. Martín, L. Sánchez, J. Garín, J. Orduna, R. Alcalá, B.
Villacampa and C. Sánchez, Tetrahedron, 1998, 54, 11 651.
3 G. J. Marshallsay and M. R. Bryce, J. Org. Chem., 1994, 59, 6847; N.
Martín, I. Pérez, L. Sánchez and C. Seoane, J. Org. Chem., 1997, 62,
870; N. Martín, I. Pérez, L. Sánchez and C. Seoane, J. Org. Chem.,
1997, 62, 5690.
4 T. Finn, M. R. Bryce, A. S. Batsanov and J. A. K. Howard, Chem.
Commun., 1999, 1835.
5 (a) A. J. Moore and M. R. Bryce, J. Chem. Soc., Perkin Trans. 1, 1991,
157; (b) M. R. Bryce, M. A. Coffin, M. B. Hursthouse, A. I. Karaulov,
K. Müllen and H. Scheich, Tetrahedron Lett., 1991, 32, 6029 ; (c) N.
Martín, L. Sánchez, C. Seoane, E. Ortí, P. M. Viruela and R. Viruela,
J. Org. Chem., 1998, 63, 1268; (d) A. S. Batsanov, M. R. Bryce, M. A.
Coffin, A. Green, R. E. Hester, J. A. K. Howard, I. K. Lednev, N.
Martín, A. J. Moore, J. N. Moore, E. Ortí, L. Sánchez, M. Savíron, P. M.
Viruela, R. Viruela and T.-Q. Ye, Chem. Eur. J., 1998, 4, 2580.
6 (a) M. R. Bryce, T. Finn and A. J. Moore, Tetrahedron Lett., 1999, 40,
3221; (b) M. R. Bryce, T. Finn, A. J. Moore, A. S. Batsanov and J. A. K.
Howard, Eur. J. Org. Chem., 1999, in the press.
7 (a) J. Llacay, M. Mas, E. Molins, J. Veciana, D. Powell and C. Rovira,
Chem. Commun., 1997, 659; (b) J. Llacay, J. Veciana, J. Vidal-
Gancedo, J. L. Bourdelande, R. Gonzalez-Moreno and C. Rovira,
J. Org. Chem., 1998, 63, 5201; (c) P. Hudhomme, S. G. Liu, D. Kreher,
M. Cariou and A. Gorgues, Tetrahedron Lett., 1999, 40, 2927.
8 C. Boulle, O. Desmars, N. Gautier, P. Hudhomme, M. Cariou and A.
Gorgues, Chem. Commun., 1998, 2197.
Fig. 2 Molecular structure of 14; CH3 and CHO substituents are evenly
distributed between C(19) and C(20).
unit in the crystal of 10 contains only one independent
molecule, while that of 14 comprises two molecules of similar
but non-identical conformations; in one molecule, one of the n-
hexyl chains is disordered. The anthracenediylidene system is
folded along the C(9)···(10) vector by ca. 39° in 10 and 41º in 14
and both dithiole rings are folded inward along the S…S vectors
(by 8–14°). The anthracenediylidenebis(dithiole) system is U-
shaped, with an acute angle between the S(1)C(16)C(17)S(2)
and S(3)C(19)C(20)S(4) planes: 83° in 10, 82° in 14.
The n-hexyl chains adopting all-trans conformations lie
parallel to the nearly planar anthraquinone (10) or formylthiole
(14) system. Such parallelism particularly highlights the
packing motif characteristic for ‘molecular saddles’: namely, a
pseudo-dimer of mutually engulfing molecules, symmetrically
related via an inversion centre.6b
9 J. O. Jeppesen, K. Takimiya, N. Thorup and J. Becher, Synthesis, 1999,
803.
10 Reagent 5 was prepared from zinc bis[2-thioxo-1,3-dithiole-4,5-bis-
(thiolate)] (C. Wang, A. S. Batsanov, M. R. Bryce and J. A. K. Howard,
Synthesis, 1998, 1615) by the same methods used previously for close
analogues [ref. 5(a)].
Cyclic voltammetry shows a quasi-reversible two-electron
oxidation wave at Eox +0.64 V (10) and Eox +0.54 V (14).
Additionally for 10 a quasi-reversible reduction wave of the AQ
moiety is observed at Ered 20.95 V [CV data were recorded vs.
11 R. Appel, Angew. Chem., Int. Ed. Engl., 1975, 14, 801.
12 R. M. Renner and G. R. Burns, Tetrahedron Lett., 1994, 35, 269; Similar
reactions afford 4-formyl-5-methyl-4A,5A-bis(methylsulfanyl)TTF and
4,5-bis(2-cyanoethylsulfanyl)-4A-formyl-5-methyl-TTF
(ca.
40%
2
Ag/AgCl, electrolyte Bu4N+ClO4 (0.1 M), CH2Cl2, 20 °C,
yields) (J. O. Jeppesen and J. Becher, unpublished results). The former
reaction was also observed (25% yield) by P. Blanchard, PhD Thesis,
Université de Nantes, 1994. A very different mechanism from Scheme
2 was postulated.
scan rate 100 mV s21].
The UV–VIS spectrum of compound 10 displays two bands
characteristic of system 15d,6 at 348 and 428 nm: no absorption
was observed at longer wavelengths where intramolecular
charge-transfer (ICT) bands would be expected. Studies aimed
at photoinducing ICT in system 10, and increasing the acceptor
strength of the AQ moiety,14 are in progress.
13 Other workers have observed the formation of bis(oxydimethylene)-
TTF when chlorinating tetrakis(hydroxymethyl)-TTF [ref. 7(c) and S.
Hsu and L. Chiang, Synth. Met., 1988, 27, B651].
14 N. Martín, J. L. Segura and C. Seoane, J. Mater. Chem., 1997, 7,
1161.
We thank the EPSRC and the Danish Research Academy for
funding.
Communication 9/07768E
2434
Chem. Commun., 1999, 2433–2434