Organic Letters
ORCID
Letter
(17) Photoreactions were carried out in a Rayonet chamber reactor
equipped with 24 W UV lamps wherein ∼90% of emission is 350 nm.
Reactions were conducted in 1-dram borosilicate vials using untreated
details regarding the reaction setup.
(18) As expected, furans 5a and 5b were labile. However, they could
be purified using silica gel and stored at −20 °C for 24−48 h. The half-
lives of these species at rt and 80 °C are reported in the Supporting
(19) Consistent with ref 12, secondary amines such as morpholine are
tolerated in this chemistry; however, pyrrolidine gave the best results in
our experiments. A complete report on the scope and limitations of
electron-donating groups at C6 of the pyridazine nucleus is forth-
coming.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by Florida State University (FSU). We
thank Michael Maxwell (FSU), Daniel Callen (FSU), and Elena
Paola (FSU) for assistance with substrate synthesis. Mass
spectra were collected, in part, at the University of Florida (UF)
using NIH-sponsored equipment (S10-OD021751-A1).
(20) Lower catalyst loadings (1−2.5 mol %) gave mixtures of 5b and
of catalyst loading.
(21) Powered KOH and K3PO4 gave results comparable to those of
K2CO3. A comprehensive screen of inorganic bases is reported in the
(22) No photochemical rate acceleration was observed when the
reaction was performed in THF-d6. We suspect this rate acceleration is
the result of trace HCl generated by photodecomposition of
chloroform: Hill, D. G. J. Am. Chem. Soc. 1932, 54, 32.
(23) Product 7 was isolated in identical yield when acrylonitrile (1.5
equiv) was included in the photochemical step; however, this
modification resulted in a prolonged photoirradiation time of 9 h.
(24) Pyridazines have been used as 4π-diene components in Diels−
Alder reactions; however, these cycloadditions require increased
temperature or catalytic activation of the diazine. For examples, see:
(a) Boger, D. L.; Coleman, R. S. J. Org. Chem. 1984, 49, 2240.
(b) Kessler, S. N.; Wegner, H. A. Org. Lett. 2010, 12, 4062.
(25) Benzyl hydrogen carbonate was not detected by 1H NMR
spectroscopy (400 MHz) of the unpurified reaction mixture. Instead,
this species undergoes decarboxylation to give benzyl alcohol: Pocker,
Y.; Davison, B. L.; Deits, T. L. J. Am. Chem. Soc. 1978, 100, 3564.
REFERENCES
■
(1) For reviews on the Diels−Alder reaction of furan, see: (a) Lipshutz,
B. H. Chem. Rev. 1986, 86, 795. (b) Kappe, C. O.; Murphree, S. S.;
Padwa, A. Tetrahedron 1997, 53, 14179.
(2) Padwa, A.; Flick, A. C. Adv. Heterocycl. Chem. 2013, 110, 1.
(3) (a) Padwa, A.; Dimitroff, M.; Waterson, A. G.; Wu, T. J. Org.
Chem. 1997, 62, 4088. (b) Padwa, A.; Dimitroff, M.; Waterson, A. G.;
Wu, T. J. Org. Chem. 1998, 63, 3986.
(4) (a) Vargha, L.; Ramonczai, J.; Bite, P. J. Am. Chem. Soc. 1948, 70,
371. (b) Ito, K.; Yakushijin, K. Heterocycles 1978, 9, 1603.
(c) Bobosikova, M.; Clegg, W.; Coles, S. J.; Dandarova, M.;
Hursthouse, M. B.; Kiss, T.; Krutosikova, A.; Liptaj, T.; Pronayova,
N.; Ramsden, C. A. J. Chem. Soc., Perkin Trans. 2001, 1, 680. (d) Quai,
M.; Frattini, S.; Vendrame, U.; Mondoni, M.; Dossena, S.; Cereda, E.
Tetrahedron Lett. 2004, 45, 1413.
(5) Padwa, A.; Crawford, K. R.; Rashatasakhon, P.; Rose, M. J. Org.
Chem. 2003, 68, 2609.
(6) The alternative strategy of adding an electron-withdrawing group
to the furan nucleus is also effective: (a) Mossetti, R.; Caprioglio, D.;
Colombano, G.; Tron, G. C.; Pirali, T. Org. Biomol. Chem. 2011, 9,
1627. (b) Jiang, Y.; Khong, V. Z. Y.; Lourdusamy, E.; Park, C.-M. Chem.
Commun. 2012, 48, 3133.
(7) For select examples in heterocycle synthesis, see: (a) Medimagh,
R.; Marque, S.; Prim, D.; Chatti, S.; Zarrouk, H. J. Org. Chem. 2008, 73,
2191. (b) Kiren, S.; Hong, X.; Leverett, C. A.; Padwa, A. Org. Lett. 2009,
11, 1233. (c) Xu, J.; Wipf, P. Org. Biomol. Chem. 2017, 15, 7093.
(8) For select examples in natural product total synthesis, see:
(a) Trost, B. M.; McDougall, P. J. Org. Lett. 2009, 11, 3782.
(b) Petronijevic, F. R.; Wipf, P. J. Am. Chem. Soc. 2011, 133, 7704.
(c) Li, G.; Padwa, A. Org. Lett. 2011, 13, 3767.
(9) For generalized methods to prepare 2-aminofurans, see: (a) Nair,
V.; Vinod, A. U. Chem. Commun. 2000, 1019. (b) Liu, P.; Lei, M.; Ma,
L.; Hu, L. Synlett 2011, 2011, 1133. (c) Kondoh, A.; Ishikawa, S.; Aoki,
T.; Terada, M. Chem. Commun. 2016, 52, 12513. (d) Mahida, A. K.;
Kale, S. B.; Das, U. Eur. J. Org. Chem. 2017, 2017, 6427.
(10) For a report of intermolecular [4 + 2] cycloadditions involving 2-
aminofurans, see: Neo, A. G.; Bornadiego, A.; Diaz, J.; Marcaccini, S.;
Marcos, C. F. Org. Biomol. Chem. 2013, 11, 6546.
(11) For early reports on the photochemical ring opening of
pyridazine N-oxides, see: (a) Kumler, P. L.; Buchardt, O. J. Am.
Chem. Soc. 1968, 90, 5640. (b) Tomer, K. B.; Harrit, N.; Rosenthal, I.;
Buchardt, O.; Kumler, P. L.; Creed, D. J. Am. Chem. Soc. 1973, 95, 7402.
(12) Portillo, M.; Maxwell, M. A.; Frederich, J. H. Org. Lett. 2016, 18,
5142.
(13) For reports on the photodeoxygenation of pyridazine N-oxides,
see: (a) Ogata, M.; Kano, K. Chem. Commun. 1967, 1176. (b) Tsuchiya,
T.; Arai, H.; Igeta, H. Tetrahedron Lett. 1969, 10, 2747. (c) Tsuchiya,
T.; Arai, H.; Igeta, H. J. Chem. Soc., Chem. Commun. 1972, 550.
(14) Furans have been reported as side products of pyridazine N-oxide
photochemistry. For examples, see ref 11b and Ogawa, Y.; Iwasaki, S.;
Okuda, S. Tetrahedron Lett. 1981, 22, 2277.
(15) Padwa, A.; Weingarten, D. M. Chem. Rev. 1996, 96, 223.
(16) Johnson, T.; Cheshire, D. R.; Stocks, M. J.; Thurston, V. T.
Synlett 2001, 2001, 0646.
E
Org. Lett. XXXX, XXX, XXX−XXX