Aldehydes are easily converted to acroleins using this
catalytic system. 3-Phenylpropional afforded a 95% yield
(Table 2, entry 13). The TBDPS protecting group is stable to
these reaction conditions (Table 2, entry 17).
p. 201; (b) D. Basavaiah, A. J. Rao and T. Satyanarayana, Chem.
Rev., 2003, 103, 811–891; (c) V. Singh and S. Batra, Tetrahedron,
2008, 64, 4511–4574; (d) S. France, D. J. Guerin and T. Lectka,
Chem. Rev., 2003, 103, 2985–3012; (e) G. Masson, C. Housseman
and J. Zhu, Angew. Chem., Int. Ed., 2007, 46, 4614–4628;
(f) Y. L. Shi and M. Shi, Eur. J. Org. Chem., 2007, 2905–2916.
4 (a) H. B. Kagan and O. Riant, Chem. Rev., 1992, 92, 1007–1019;
Several reactions produced similar or higher yields of
products when the reaction conditions were buffered with
additional i-Pr2NH instead of additional TFA (Table 1,
entry 9). For example, when the TES protected methyl
acetylene ketone (4-(triethylsilyl)but-3-yn-2-one)13 was treated
under our standard reaction conditions, no desired product
was observed. But, by adding 1 equiv. i-Pr2NH, the desired
adduct 17 was obtained in 2 h in 62% yield (Table 2, entry 18).
Additionally, the enol product 13 was produced in 85%
yield when 0.5 equiv. of i-Pr2NH was used instead of TFA
(Table 2, entry 14).
(b) A. Erkkila, I. Majander and P. M. Pihko, Chem. Rev., 2007,
¨
107, 5416–5470.
5 (a) A. B. Northrup and D. W. E. MacMillan, J. Am. Chem. Soc.,
2002, 124, 2458–2460; (b) P. Li, S. Wen, F. Yu, Q. Liu, W. Li,
Y. Wang, X. Liang and J. Ye, Org. Lett., 2008, 11, 753–756;
(c) J. W. Yang, M. T. Hechavarria Fonseca, N. Vignola and
B. List, Angew. Chem., Int. Ed., 2005, 44, 108–110;
(d) K. Ishihara and K. Nakano, J. Am. Chem. Soc., 2005, 127,
10504–10505.
6 (a) T. Shono, I. Nishiguchi, T. Komamura and M. Sasaki, J. Am.
Chem. Soc., 1979, 101, 984–987; (b) Y. Y. Lin, M. Risk, S. M. Ray,
D. VanEngen, J. Clardy, J. Golik, J. C. James and K. Nakanishi,
J. Am. Chem. Soc., 1981, 103, 6773; (c) A. Nadin and
K. C. Nicolaou, Angew. Chem., Int. Ed. Engl., 1996, 35, 1623;
(d) A. J. Robichaud, G. D. Berger and D. A. Evans, Tetrahedron
Lett., 1993, 34, 8403–8404; (e) M. Tokumasu, H. Ando, Y. Hiraga,
S. Kojima and S. Ohkata, J. Chem. Soc., Perkin Trans. 1, 1999,
489; (f) K. D. Stiger, R. Tang and P. A. Bartlett, J. Org. Chem.,
1999, 64, 8409.
As a final note, several reactions that we tried were
significantly slower when a catalytic amount (10–50 mol%)
of i-Pr2NHÁTFA was utilized. Given the modest cost and
convenience of this reagent, we have not further explored
the application of catalytic reaction conditions.
In conclusion, using the readily available diisopropylammonium
trifluoroacetate salt as a catalyst, the a-methylenation of
carbonyl compounds has been successfully accomplished
under mild reaction conditions in good to excellent yields
(62% to 99%, 19 of 21 examples above 80%) using various
aromatic and aliphatic ketones, aldehydes and esters at 67 1C
in 8 h. No isomerization of the double bond is detected, no
over alkylation or polymerization of any of the adducts
is detected and functional group tolerance is excellent. We
believe that this is the simplest and most straightforward
method currently available for the a-methylenation of carbonyl
compounds.
7 (a) C. S. Marvel, R. L. Myers and J. H. Saunders, J. Am. Chem.
Soc., 1948, 70, 1694–1699; (b) K. Basu, J. Richards and
L. A. Paquette, Synthesis, 2004, 2841–2844; (c) B. B. Snider,
M. Lobera and T. P. Marien, J. Org. Chem., 2003, 68,
6451–6454; (d) R. M. Deshpande, M. M. Diwakar,
A. N. Mahajan and R. V. Chaudhari, J. Mol. Catal. A, 2004,
211, 49–53; (e) K. Yoshida and P. Grieco, J. Org. Chem., 1984, 49,
5257–5260; (f) R. Heckendorn, H. Allgeier, J. Baud,
W. Gunzenhauser and C. Angst, J. Med. Chem., 1993, 36,
3721–3726; (g) H. M. Boehm, S. Handa, G. Pattenden,
L. Roberts, A. J. Blake and W.-S. Li, J. Chem. Soc., Perkin Trans.,
2000, 3522–3538; (h) J. Villie
406–408.
8 (a) A. Erkkila and P. M. Pihko, J. Org. Chem., 2006, 71,
´
ras and M. Rambaud, Synthesis, 1984,
¨
2538–2541; (b) A. Erkkila and P. M. Pihko, Eur. J. Org. Chem.,
2007, 4205–4216.
¨
The Norman Hackerman Advanced Research Program and
the Robert A. Welch Foundation (A-1623) are gratefully
acknowledged for support of this research. Dr Young Kim
performed the reaction described in Table 2, entry 18.
9 G. Kinast and L.-F. Tietze, Angew. Chem., 1976, 88,
261–262.
10 (a) K. C. Nicolaou, F. P. J. T. Rutjes, E. A. Theodorakis, J. Tiebes,
M. Sato and E. Untersteller, J. Am. Chem. Soc., 1995, 117,
1173–1174; (b) K. C. Nicolaou, K. R. Reddy, G. Skokotas,
S. Fuminori and X.-Y. Xiao, J. Am. Chem. Soc., 1992, 114,
7935–7936; (c) M. T. Crimmins, M. G. Stanton and
S. P. Allwein, J. Am. Chem. Soc., 2002, 124, 5958–5959;
(d) A. Ahmed, E. K. Hoegenauer, V. S. Enev, M. Hanbauer,
H. Kaehlig, E. Ohler and J. Mulzer, J. Org. Chem., 2003, 68,
3026–3042; (e) A. Ishiwata, S. Sakamoto, T. Noda and M. Hirama,
Synlett, 1999, 692–694.
Notes and references
1 For selected examples, see: (a) B. M. Trost, J. Florez and
D. J. Jebaratnam, J. Am. Chem. Soc., 1987, 109, 613–615;
(b) D. A. Evans, A. M. Ratz, B. E. Huff and G. S. Sheppard,
J. Am. Chem. Soc., 1995, 117, 3448–3467; (c) R. K. Mann,
J. G. Parsons and M. A. Rizzacasa, J. Chem. Soc., Perkin Trans. 1,
1998, 1283–1294.
11 An alternative based on dibromomethane has also been described:
Y.-S. Hon, F.-J. Chang and L. Lu, J. Chem. Soc., Chem. Commun.,
1994, 2041–2042.
12 (a) J.-L. Gras, Tetrahedron Lett., 1978, 19, 2111–2114;
(b) J.-L. Gras, Tetrahedron Lett., 1978, 19, 2955–2958.
13 B. M. Trost, A. Fettes and B. T. Shireman, J. Am. Chem. Soc.,
2004, 126, 2660–2661.
2 (a) P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis,
Pergamon, Oxford, 1992; (b) B. E. Rossiter and N. M. Swingle,
Chem. Rev., 1992, 92, 771–806; (c) G. Giorgi, S. Miranda, P. Lo
Alvarado, C. Avendano, J. Rodriguez and J. C. Menendez, Org.
Lett., 2005, 7, 2197–2200.
´
pez-
´
3 For recent reviews, see: (a) E. Ciganek, in Organic Reactions,
ed. L. A. Paquette, John Wiley & Sons, New York, 1997, vol. 51,
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 1715–1717 | 1717