For 3: nCO 1951m, 1921vs, 1880s, 1847m; NMR: 1H, d 7.69–7.45 (m,
5H, Ph), 5.04 (s, 5H, Cp), 5.03 (s, 5H, Cp), 1.80 (dd, 3JPH 13.03, 3JHH 7.04,
2
3
3H, PNCCH3), 1.48 (dq, JPH 20.84, JHH 7.04, 1H, PNCH); 31P{1H}, d
164.81; 13C, d 229.71 (Mo–CO), 134.88–128.54 (m, phenyl region), 93.17
1
2
(s, Cp), 91.39 (s, Cp), 49.14 (d, JPC 22.82, PNC), 24.05 (d, JPC 12.68,
PNCCH3); FAB MS: m/z 572 (M+), 544 (M+ 2 CO). C22H19MoO4P
requires C, 46.34; H, 3.36; P, 5.43. Found: C, 46.10; H, 3.29; P, 5.42%.
For 4: nCO 1938m, 1888vs, 1868s; NMR: 1H, d 7.79–7.17 (m, 10H, Ph),
2
3
3
4.75 (s, Cp), 4.72 (s, Cp), 3.32 (ddd, JPH 29.2, JHH 9.1, JHH 2.3, 1H,
3
3
3
Ph2PCHNCH2), 1.96 (ddd, JPH 21.8, JHH 12.4, JHH 2.3, 1H, cis-
3
3
3
Ph2PCHNCHH), 1.61 (ddd, JHH 12.4, JHH 9.1, JPH 2.1, 1H, trans-
CHNCHH); 31P{1H}, d 35.93; 13C, d 238 (CO), 228 (CO), 137.37–128.10
2
(m, phenyl groups), 91.71 (s, Cp), 91.16 (s, Cp), 50.84 (d, JPC 14.17,
Ph2PCNC), 10.64 (d, JPC 41.70, Ph2PCNC); FAB MS: m/z 650 (M+).
1
C
28H23Mo2O4P requires C, 52.03; H, 3.59; P 4.79. Found: C, 52.29; H,
3.66; P, 4.68%.
‡ Crystal data: Data in common: graphite monochromated Mo-Ka
radiation; l
= 0.71069; data collected at 180(2) K using an Oxford
Cryostream cooling apparatus. Solution by direct methods (SIR 9)13 and
subsequent Fourier syntheses, anisotropic full-matrix least-squares refine-
ment on F2 (SHELXL 93),14 hydrogen atoms included using a riding
model.
2: trans-C22H19Mo2O4P, M = 570.22, red plate, 0.20 3 0.15 3 0.10 mm,
monoclinic, space group P21/n, a
= 8.278(3), b = 14.908(6), c =
16.694(6) Å, b = 92.97(3)°, U = 2057.4(13) Å3, Z = 4, Dc = 1.841 Mg
m23, m(Mo-Ka) 1.323 mm21, F(000)
1128, 5467 reflections
Fig. 2 Molecular structure of 4. Selected bond lengths (Å) and angles (°):
Mo(1)–Mo(2) 3.288(1), Mo(1)–P(1) 2.408(1), Mo(2)–C(16) 2.295(3),
Mo(2)–C(15) 2.339(3), C(16)–C(15) 1.409(4); C(23)–P(1)–C(16) 101.9(2),
P(1)–C(16)–Mo(2) 97.3(2), C(15)–C(16)–Mo(2) 74.0(2), Mo(1)–Mo(2)–
C(16) 74.6(2).
=
=
measured using w–2q method on a Rigaku AFC7R diffractometer, 3631
unique (Rint = 0.059) used in all calculations. Data collection range 2.69 <
q < 25.03. R1 = 0.0538, wR2 = 0.1540 for 2960 observed reflections [I >
2s(I)] and 262 parameters.
3: cis-C22H19Mo2O4P, M = 570.22, red plate, 0.15 3 0.12 3 0.12 mm,
orthorhombic, space group P212121, a = 9.615(3), b = 14.568(4), c =
15.191(3) Å, U = 2127.8(1) Å3, Z = 4, Dc = 1.780 Mg m23, m(Mo-Ka)
= 1.279 mm21, F(000) = 1128. 8608 reflections measured on a Nonius
Kappa CCD diffractometer, 4896 unique (Rint = 0.0031). Data collection
range 1.94 < q < 27.48. R1 = 0.025, wR2 = 0.0735 for 4648 observed
reflections [I > 2s(I)] and 263 parameters.
complex (see Figs. 1 and 2). The P(1)–C(21)–C(22) bond angle
increases from 121.2(6) to 127.4(3) on conversion of 2 to 3.
The PNC bond lengths of 1.754(7) and 1.749(3) Å for 2 and
3, respectively, are significantly shorter than the 1.812(9) Å
recorded by Weber et al. for their related complex [Cp2-
1
2
(CO)2Fe2{h –h -(Cp(CO)2Fe)PNCHSMe}].7 However, they do
fall within the range recorded by Williams et al. for their series
of cluster-stabilised phosphaalkenes.10 Both 2 and 3 contain a
semi-bridging carbonyl group linking to the second molybde-
num atom.
4: C28H23Mo2O4P, M = 646.31, red plate, 0.10 3 0.05 3 0.03 mm,
¯
triclinic, space group P1, a = 8.304(1), b = 9.978(1), c = 16.024(1) Å, a
= 94.19(1), b = 102.92(1), g = 106.26(1)°, U = 1229.2(2) Å3, Z = 4, Dc
= 1.746 Mg m23, m(Mo-Ka) = 1.119 mm21, F(000) = 644, 8421
reflections measured on a Nonius Kappa CCD diffractometer, 5589 unique
(Rint = 0.037). Data collection range 1.32 < q < 27.46. R1 = 0.0398, wR2
= 0.0732 for 5582 observed reflections [I > 2s(I)] and 316 parameters.
crystallographic files in .cif format.
The molecular structure of 4 shows a Mo–Mo bond length of
3.288(1) Å, which is slightly longer than that present in 2 and 3
(Fig. 2). The C(15)–C(16) bond length of 1.409(4) Å is typical
1
2
of that in other complexes containing a h –h vinyl phos-
phine.11,12
1 R. Appel, in Multiple Bonds and Low Coordination in Phosphorus
Chemistry, M. Regitz and O. J. Scherer, Thieme, Stuttgart, 1990 and
references therein; J. F. Nixon, Chem. Rev., 1988, 88, 1327.
2 L. Weber, O. Kaminski, H.-G. Stammler, B. Neumann and V. D.
Romanenko, Z. Naturforsch., Teil B, 1993, 48, 1784.
3 J. E. Davies, L. C. Kerr, M. J. Mays, P. R. Raithby, P. K. Tompkin and
A. D. Woods, Angew. Chem., Int. Ed. Engl., 1998, 37, 1428.
4 J. E. Davies, M. J. Mays, E. J. Pook, P. R. Raithby and P. K. Tompkin,
J. Chem. Soc., Dalton Trans., 1997, 3283.
5 P. K. Tompkin, PhD Dissertation, University of Cambridge, 1997.
6 D. Gudat, E. Niecke, W. Malisch, U. Hofmockel, S. Quashie, A. H.
Cowley, A. M. Arif, B. Krebs and M. Dartmann, J. Chem. Soc., Chem.
Commun., 1985, 1687; S. Holand, C. Charrier, F. Mathey, J. Fischer and
A. Mitschler, J. Am. Chem. Soc., 1984, 106, 826; D. Gudat, E. Niecke,
B. Krebs and M. Dartmann, Chimia, 1985, 39, 277; L. Weber, Angew.
Chem. Chem., Int. Ed. Engl., 1996, 35, 271.
1
The H NMR spectra of 2 and 3 highlight the different
environments of the vinylic proton. In 2 the proton resonates as
a doublet of quartets at d 4.14, whereas the analogous resonance
in 3 occurs as a broad peak at d 1.48; this latter value is in good
agreement with that recorded by Weber et al. for their
compound.7
Bimetallic Group 6 metal complexes coordinated to phos-
1
2
phaalkenes have not been reported previously, and an h –h
bonding mode for a phosphaalkenes is extremely rare. Addi-
tionally, the described method represents the first high yield
route to metallophosphaalkenes that contain no other heteroa-
tom substituents.
We thank the EPSRC for a quota award to A. D. W. and ICI
for a CASE award to A. D. W. EPSRC support for the purchase
of the Nonius Kappa CCD diffractometer is also gratefully
acknowledged.
7 L. Weber, I. Schumann, H.-G. Stammler and B. Neumann, Organome-
tallics, 1995, 14, 1626.
8 K. Knoll, G. Huttner, L. Zsolani and O. Orami, Angew. Chem., Int. Ed.
Engl., 1986, 25, 1119.
Notes and references
9 C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, J. Organomet.
Chem., 1996, 506, 191.
10 G. D. Williams, G. L. Geoffrey, R. R. Whittle and A. L. Rheingold,
J. Am. Chem. Soc., 1985, 107, 729.
11 J. Lunniss, S. A. MacLaughlin, N. J. Taylor, A. J. Carty and E. Sappa,
Organometallics, 1985, 4, 2066.
12 D. Buchholz, G. Huttner and L. Zsolani, J. Organomet. Chem., 1990,
381, 97.
† Selected spectroscopic data: [IR (nCO/cm21) measured in hexane; 1H
NMR and 31P {1H} NMR spectra were recorded in CDCl3 solution relative
to TMS and 85% H3PO4(aq) respectively, with upfield shifts negative; J in
Hz].
For 2: nCO 1955m, 1927.6vs, 1822s, 1851m; NMR: 1H d 7.8–7.3 (m, 5H,
Ph), 5.24 (s, 5H, Cp), 4.82 (s, 5H, Cp), 4.14 (dq, 2JPH 14.1, 3JHH 7.1, 1H,
PNCH), 1.42 (dd, 3JPH 17.82, 3JHH 7.1, 3H, PNCCH3); 31P{1H}, d 158.32;
13 A. Altomare, G. Cascarano, C. Giacavazzo, A. Guagliardi, M. C. Byrla,
G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435.
14 G. M. Sheldrick, SHELXL 93, University of Go¨ttingen, 1993.
2
2
13C, d 242.31 (d, JPC 22.96, Mo–CO), 235.32 (d, JPC 7.55, Mo–CO),
230.02 (s, Mo–CO), 141.03–128.27 (m, PPh), 92.90 (s, Cp), 91.39 (s, Cp),
42.29 (d, 1JPC 12.4, PNC), 18.62 (d, 2JPC 7.23, PNCCH3) FAB MS: m/z 572
(M+), 544 (M+ 2 CO); C22H19MoO4P requires C, 46.34; H, 3.36; P 5.43.
Found: C, 46.21; H, 3.38; P 5.42%.
Communication 9/07915G
2456
Chem. Commun., 1999, 2455–2456