Journal of the American Chemical Society
Page 4 of 9
O'Connor, S. E.; Naesby, M. The important ergot alkaloid intermediate
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website at DOI:
chanoclavine-I produced in the yeast Saccharomyces cerevisiae by the
combined action of EasC and EasE from Aspergillus japonicus. Microbial
cell factories 2014, 13, 95.
1
2
3
4
5
6
7
8
9
(12) Ryan, K. L.; Moore, C. T.; Panaccione, D. G. Partial reconstruction of
the ergot alkaloid pathway by heterologous gene expression in Aspergillus
nidulans. Toxins (Basel) 2013, 5, 445.
(13) Jakubczyk, D.; Caputi, L.; Hatsch, A.; Nielsen, C. A.; Diefenbacher,
M.; Klein, J.; Molt, A.; Schroder, H.; Cheng, J. Z.; Naesby, M.; O'Connor,
S. E. Discovery and reconstitution of the cycloclavine biosynthetic
pathway-enzymatic formation of a cyclopropyl group. Angew. Chem.
Weinheim Bergstr. Ger. 2015, 127, 5206.
(14) Goetz, K. E.; Coyle, C. M.; Cheng, J. Z.; O'Connor, S. E.; Panaccione,
D. G. Ergot cluster-encoded catalase is required for synthesis of
chanoclavine-I in Aspergillus fumigatus. Curr. Genet. 2011, 57, 201.
(15) Ryan, K. L.; Akhmedov, N. G.; Panaccione, D. G. Identification and
structural elucidation of ergotryptamine, a new ergot alkaloid produced by
genetically modified Aspergillus nidulans and natural isolates of Epichloë
species. J. Agric. Food Chem. 2015, 63, 61.
Experimental details; spectroscopic and computational data; Tables
S1−S6 and Figures S1−S44
AUTHOR INFORMATION
Corresponding Author
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ORCID
Kendall Houk: 0000-0002-8387-5261
Shu-Shan Gao: 0000-0001-6335-2052
Chun-Yan An: 0000-0001-9918-5903
Yongpeng Yao: 0000-0002-6084-1683
Weiwei Liu: 0000-0002-5059-9416
(16) Lorenz, N.; Olsovska, J.; Sulc, M.; Tudzynski, P. Alkaloid cluster
gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I
synthase,
a flavin adenine dinucleotide-containing oxidoreductase
mediating the transformation of N-methyl-dimethylallyltryptophan to
chanoclavine I. Appl. Environ. Microbiol. 2010, 76, 1822.
(17) Cole, R. J.; Kirksey, J. W.; Dorner, J. W.; Wilson, D. M.; Johnson, J.
C.; Johnson, A. N.; Bedell, D. M.; Springer, J. P.; Chexal, K. K. Mycotoxins
produced by Aspergillus fumigatus species isolated from molded silage. J.
Agric. Food Chem. 1977, 25, 826.
(18) Pollegioni, L.; Piubelli, L.; Sacchi, S.; Pilone, M. S.; Molla, G.
Physiological functions of D-amino acid oxidases: from yeast to humans.
Cell. Mol. Life Sci. 2007, 64, 1373.
(19) Kozikowski, A. P.; Chen, C.; Wu, J. P.; Shibuya, M.; Kim, C. G.; Floss,
H. G. Probing ergot alkaloid biosynthesis: intermediates in the formation of
ring C. J. Am. Chem. Soc. 1993, 115, 2482.
(20) Walsh, C. T.; Wencewicz, T. A. Flavoenzymes: versatile catalysts in
biosynthetic pathways. Nat. Prod. Rep. 2013, 30, 175.
(21) Kirkman, H. N.; Galiano, S.; Gaetani, G. F. The function of catalase-
bound NADPH. J. Biol. Chem. 1987, 262, 660.
(22) Wang, C.; Chang, W.-C.; Guo, Y.; Huang, H.; C Peck, S.; Pandelia,
M.-E.; Lin, G.-M.; Liu, H.-W.; Krebs, C.; Martin Bollinger, J. Evidence that
the fosfomycin-producing epoxidase, HppE, is a non-heme-iron peroxidase.
Science 2013, 342, 991.
(23) Tang, M. C.; Fu, C. Y.; Tang, G. L. Characterization of SfmD as a
Heme peroxidase that catalyzes the regioselective hydroxylation of 3-
Author Contributions
§These authors contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This study was supported by the National Key Research and
Development Program of China 2018YFA0901600, by the
Strategic Priority Research Program, CAS, under grant No.
XDA22050401, by the National Science Foundation of China
under grant No. 31872614 and 31600270, by the Youth Innovation
Promotion Association, CAS, under the grant No. Y92R011CX2,
by the National Institutes of General Medical Sciences, NIH, under
grant No. GM124480, by the UCLA Chemistry-Biology Interface
training program, NIH, under grant No. T32GM008496.
methyltyrosine to 3-hydroxy-5-methyltyrosine in saframycin
A
REFERENCES
biosynthesis. J. Biol. Chem. 2012, 287, 5112.
(24) Hansberg, W.; Salas-Lizana, R.; Dominguez, L. Fungal catalases:
function, phylogenetic origin and structure. Arch. Biochem. Biophys. 2012,
525, 170.
(25) Wallwey, C.; Matuschek, M.; Li, S. M. Ergot alkaloid biosynthesis in
Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I
aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch.
Microbiol. 2010, 192, 127.
(26) Huang, X.; Groves, J. T. Oxygen activation and radical transformations
in Heme proteins and metalloporphyrins. Chem. Rev. 2018, 118, 2491.
(27) Goyal, M. M.; Basak, A. Hydroxyl radical generation theory: a
possible explanation of unexplained actions of mammalian catalase. Int. J.
Biochem. Mol. Biol. 2012, 3, 282.
(28) Wang, B.; Lu, J.; Dubey, K. D.; Dong, G.; Lai, W.; Shaik, S. How do
enzymes utilize reactive OH radicals? Lessons from nonheme HppE and
Fenton systems. J. Am. Chem. Soc. 2016, 138, 8489.
(29) Schneider, J. E.; Browning, M. M.; Floyd, R. A. Ascorbate/iron
mediation of hydroxyl free radical damage to PBR322 plasmid DNA. Free
Radic. Biol. Med. 1988, 5, 287.
(30) Keithahn, C.; Lerchl, A. J. 5-hydroxytryptophan is a more potent in
vitro hydroxyl radical scavenger than melatonin or vitamin C. J. Pineal Res.
2005, 38, 62.
(31) Bauer, N. A.; Hoque, E.; Wolf, M.; Kleigrewe, K.; Hofmann, T.
Detection of the formyl radical by EPR spin-trapping and mass
spectrometry. Free Radic. Biol. Med. 2018, 116, 129.
(32) Mothes Von, K.; Weygand, F.; Gröger, D.; Grisebach, H.
Untersuchungen zur Biosynthese der Mutterkorn-Alkaloide. Zeitschrift für
Naturforschung B, 1958, 13, 41.
(1) Jakubczyk, D.; Cheng, J. Z.; O'Connor, S. E. Biosynthesis of the ergot
alkaloids. Nat. Prod. Rep. 2014, 31, 1328.
(2) Chen, J.-J.; Han, M.-Y.; Gong, T.; Yang, J.-L.; Zhu, P. Recent progress
in ergot alkaloid research. RSC Advances 2017, 7, 27384.
(3) de Groot, A. N.; van Dongen, P. W.; Vree, T. B.; Hekster, Y. A.; van
Roosmalen. Ergot alkaloids: Current status and review of clinical
pharmacology and therapeutic use compared with other oxytocics in
obstetrics and gynaecology. J. Drugs 1998, 56, 523.
(4) Ge, H. M.; Yu, Z. G.; Zhang, J.; Wu, J. H.; Tan, R. X. Bioactive
alkaloids from endophytic Aspergillus fumigatus. J. Nat. Prod. 2009, 72,
753.
(5) Vinokurova, N. G.; Ozerskaia, S. M.; Baskunov, B. P.; Arinbasarov, M.
U. The Penicillium commune Thom and Penicillium clavigerum Demelius
fungi--fumigaclavines A and B producers. Mikrobiologiia 2003, 72, 180.
(6) Tudzynski, P.; Correia, T.; Keller, U. Biotechnology and genetics of
ergot alkaloids. Appl. Microbiol. Biotechnol. 2001, 57, 593.
(7) Gerhards, N.; Neubauer, L.; Tudzynski, P.; Li, S. M. Biosynthetic
pathways of ergot alkaloids. Toxins (Basel) 2014, 6, 3281.
(8) Coyle, C. M.; Panaccione, D. G. An ergot alkaloid biosynthesis gene
and clustered hypothetical genes from Aspergillus fumigatus. Appl.
Environ. Microbiol. 2005, 71, 3112.
(9) Unsöld, I. A.; Li, S.-M. Overproduction, purification and
characterization of FgaPT2, a dimethylallyltryptophan synthase from
Aspergillus fumigatus. Microbiology 2005, 151, 1499.
(10) Rigbers, O.; Li, S. M. Ergot alkaloid biosynthesis in Aspergillus
fumigatus. Overproduction and biochemical characterization of a 4-
dimethylallyltryptophan N-methyltransferase. J. Biol. Chem. 2008, 283,
26859.(11) Nielsen, C. A.; Folly, C.; Hatsch, A.; Molt, A.; Schroder, H.;
ACS Paragon Plus Environment