378
Inorg. Chem. 2000, 39, 378-381
Notes
azirines,18 additions to vinylimido complexes,19 and R-depro-
tonation of imido complexes.20 The synthetic method described
here involves formation of the nitrogen-carbon bond of the
azavinylidene via a redox reaction with the metal nitride.
Oxidative Azavinylidene Formation in the
Reaction of 1,3-Diphenylisobenzofuran with
Osmium Nitride Complexes
Seth N. Brown
Experimental Section
Department of Chemistry and Biochemistry,
251 Nieuwland Science Hall, University of Notre Dame,
Notre Dame, Indiana 46556-5670
cis- and trans-[(terpy)OsNCl2]PF6 were prepared by the literature
methods.8 1,3-Diphenylisobenzofuran was purchased from Aldrich. All
solvents were used as received, and all manipulations were performed
on the benchtop without precautions to exclude air or moisture.
Reactions were carried out in the dark to avoid possible photodecom-
ReceiVed July 8, 1999
1
position of the diphenylisobenzofuran. H and 13C{1H} NMR spectra
Introduction
were obtained on a General Electric GN-300 NMR spectrometer at
300.49 and 75.56 MHz, respectively. IR spectra were measured on a
Perkin-Elmer PARAGON 1000 FT-IR spectrometer. Fast atom bom-
bardment mass spectra were obtained on a JEOL JMS-AX505HA mass
spectrometer using 3-nitrobenzyl alcohol as a matrix. Elemental analyses
were performed by M-H-W Laboratories (Phoenix, AZ).
Terminal metal nitride complexes present two complementary
types of reactivity. On one hand, the uncoordinated nitrogen
lone pair can act as a nucleophile, leading to Lewis acid adducts,
µ-nitrido complexes, or alkylation.1 On the other hand, a
growing number of studies have shown that nitrido complexes,
particularly those of osmium and ruthenium, can also display
electrophilic reactivity at nitrogen. Reagents as diverse as
phosphines,2 amine N-oxides,3 amines,4 azides,5 Grignard
reagents,6 and arylboranes7 have been reported to add to
osmium(VI) nitride complexes. Below is described the reaction
of the electrophilic nitrido complexes cis- and trans-[(terpy)-
OsNCl2]+ (cis- and trans-1)8 with 1,3-diphenylisobenzofuran
to form azavinylidene complexes. This novel azavinylidene
synthesis represents, formally at least, action of the nitride
nitrogen as both an electrophile and a nucleophile in the
formation of the new carbon-nitrogen double bond.
Azavinylidene complexes are known for transition metals
ranging from group IV through group IX. They are typically
prepared from precursors that already contain a carbon-nitrogen
bond, although condensation of metal amides with ketones has
also been used.9 Typical synthetic methods include oxidation
of coordinated amines,10 deprotonation of organic imines,11
reduction of oximes,12 reductive cleavage of azines,13 insertions
of nitriles into metal-hydrogen or metal-carbon bonds,14
protonation of nitriles,15 addition of nucleophiles to coordinated
nitriles,16 reductive coupling of nitriles,17 ring opening of
(11) (a) Farmery, K.; Kilner, M.; Midcalf, C. J. Chem. Soc. A 1970, 2279-
2285. (b) Kilner, M.; Midcalf, C. J. Chem. Soc. A 1971, 292-297.
(c) Kilner, M.; Pinkney, J. N. J. Chem. Soc. A 1971, 2887-2893. (d)
Latham, I. A.; Leigh, G. J.; Huttner, G.; Jibril, I. J. Chem. Soc., Dalton
Trans. 1986, 377-383. (e) Daniel, T.; Mu¨ller, M.; Werner, H. Inorg.
Chem. 1991, 30, 3118-3120. (f) Werner, H.; Daniel, T.; Knaup, W.;
Nurnberg, O. J. Organomet. Chem. 1993, 462, 309-318. (g) Esteru-
elas, M. A.; Lahoz, F. J.; Olivan, M.; Onate, E.; Oro, L. A.
Organometallics 1994, 13, 3315-3323. (h) Daniel, T.; Werner, H. Z.
Naturforsch., B 1992, 47, 1707-1710. (i) Bohanna, C.; Esteruelas,
M. A.; Lopez, A. M.; Oro, L. A. J. Organomet. Chem. 1996, 526,
73-83. (j) Beckhaus, R.; Wagner, M.; Wang, R. Z. Anorg. Allg. Chem.
1998, 624, 277-280. (k) Mann, G.; Hartwig, J. F.; Driver, M. S.;
Fernandez-Rivas, C. J. Am. Chem. Soc. 1998, 120, 827-828.
(12) (a) Werner, H.; Knaup, W.; Dziallas, M. Angew. Chem., Int. Ed. Engl.
1987, 26, 248-250. (b) Werner, H.; Daniel, T.; Mu¨ller, M.; Mahr, N.
J. Organomet. Chem. 1996, 512, 197-205. (c) Ferreira, C. M. P.;
Guedes da Silva, M. F. C.; Kukushkin, V. Y.; Frau´sto da Silva, J. J.
R.; Pombeiro, A. J. L. J. Chem. Soc., Dalton Trans. 1998, 325-326.
(13) Zippel, T.; Arndt, P.; Ohff, A.; Spannenberg, A.; Kempe, R.; Rosenthal,
U. Organometallics 1998, 17, 4429-4437.
(14) (a) Erker, G.; Fro¨mberg, W.; Atwood, J. L.; Hunter, W. E. Angew.
Chem., Int. Ed. Engl. 1984, 23, 68-69. (b) Fro¨mberg, W.; Erker, G.
J. Organomet. Chem. 1985, 280, 343-354. (c) Bercaw, J. E.; Davies,
D. L.; Wolczanski, P. T. Organometallics 1986, 5, 443-450.
(15) Pombeiro, A. J. L.; Hughes, D. L.; Richards, R. L. J. Chem. Soc.,
Chem. Commun. 1988, 1052-1053.
(16) (a) Feng, S. G.; Templeton, J. L. Organometallics 1992, 11, 1295-
1303. (b) Feng, S. G.; White, P. S.; Templeton, J. L. Organometallics
1993, 12, 2131-2139. (c) Feng, S. G.; White, P. S.; Templeton, J. L.
Organometallics 1993, 12, 1765-1774. (d) Knight, D. A.; Dewey,
M. A.; Stark, G. A.; Bennett, B. K.; Arif, A. M.; Gladysz, J. A.
Organometallics 1993, 12, 4523-4534. (e) Schollhammer, P.; Pichon,
M.; Muir, K. W.; Petillon, F. Y.; Pichon, R.; Talarmin, J. Eur J. Inorg.
Chem. 1999, 221-223.
(1) Dehnicke, K.; Stra¨hle, J. Angew. Chem., Int. Ed. Engl. 1992, 31, 955-
978.
(2) (a) Griffith, W. P.; Pawson, D. J. Chem. Soc., Dalton Trans. 1975,
417-423. (b) Demadis, K. D.; Bakir, M.; Klesczewski, B. G.;
Williams, D. S.; White, P. S.; Meyer, T. J. Inorg. Chim. Acta 1998,
270, 511-526.
(3) Williams, D. S.; Meyer, T. J.; White, P. S. J. Am. Chem. Soc. 1995,
117, 823-824.
(4) Huynh, M. H. V.; El-Samanody, E.-S.; Demadis, K. D.; Meyer, T. J.;
White, P. S. J. Am. Chem. Soc. 1999, 121, 1403-1404.
(5) Demadis, K. D.; Meyer, T. J.; White, P. S. Inorg. Chem. 1998, 37,
3610-3619.
(6) Crevier, T. J.; Mayer, J. M. J. Am. Chem. Soc. 1998, 120, 5595-
5596.
(7) Crevier, T. J.; Mayer, J. M. Angew. Chem., Int. Ed. Engl. 1998, 37,
1891-1893.
(8) Williams, D. S.; Coia, G. M.; Meyer, T. J. Inorg. Chem. 1995, 34,
586-592.
(9) Stark, G. A.; Gladysz, J. A. Inorg. Chem. 1996, 35, 5509-5513.
(10) (a) Adcock, P. A.; Keene, F. R.; Smythe, R. S.; Snow, M. R. Inorg.
Chem. 1984, 23, 2336-2343. (b) Gunnoe, T. B.; White, P. S.;
Templeton, J. L. J. Am. Chem. Soc. 1996, 118, 6916-6923.
(17) (a) DeBoer, E. J. M.; Teuben, J. H. J. Organomet. Chem. 1978, 153,
53-57. (b) Young, C. G.; Philipp, C. C.; White, P. S.; Templeton, J.
L. Inorg. Chem. 1995, 34, 6412-6414.
(18) Green, M.; Mercer, R. J.; Morton, C. E.; Orpen, A. G. Angew. Chem.,
Int. Ed. Engl. 1985, 24, 422-424.
(19) Feng, S. G.; White, P. S.; Templeton, J. L. Organometallics 1995,
14, 5184-5192.
(20) (a) Chatt, J.; Dosser, R. J.; King, F.; Leigh, G. J. J. Chem. Soc., Dalton
Trans. 1976, 2435. (b) Bakir, M.; Fanwick, P. E.; Walton, R. A. Inorg.
Chem. 1988, 27, 2016. (c) Maatta, E. A.; Du, Y. J. Am. Chem. Soc.
1988, 110, 8249-8250. (d) Hills, A.; Hughes, D. L.; MacDonald, C.
J.; Mohammed, M. Y.; Pickett, C. J. J. Chem. Soc., Dalton Trans.
1991, 121-129. (e) Powell, K. R.; Pe´rez, P. J.; Luan, L.; Feng, S. G.;
White, P. S.; Brookhart, M.; Templeton, J. L. Organometallics 1994,
13, 1851-1864.
10.1021/ic990815c CCC: $19.00 © 2000 American Chemical Society
Published on Web 12/31/1999