COMMUNICATIONS
a
Spex Fluorolog II spectrofluorimeter. Details of the correction of
Gisselbrecht, M. Gross, L. Echegoyen, F. Diederich, J. Am. Chem.
Soc. 1998, 120, 8545.
[8] The decrease in amplitude of redox processes in bulky systems is a
complex process that is difficult to rationalize; for a straightforward
discussion, see F. A. Armstrong, H. A. O. Hill, N. J. Walton, Acc.
Chem. Res. 1988, 21, 407.
emission spectra and the determination of luminescence quantum yields
were as reported previously.[14] Luminescence lifetimes on the nanosecond
timescale were determined with an IBH single photon counting apparatus
(lexc 337 nm) or a single-shot Nd:YAG laser apparatus (lexc 532 nm).
Transient absorption spectra and lifetimes with picosecond and nanosecond
resolution were obtained with two pump and probe systems based on
Nd:YAG lasers; excitation with the second (532 nm) or third harmonic
(355 nm) was used. Details of this time-resolved spectroscopy equipment
were reported earlier.[14] Experimental uncertainties were estimated to be
Æ8% for lifetime determination, Æ20% for quantum yields, and Æ3 nm
for emission and absorption peaks.
[9] The accessible surface of the central core to the solvent molecules in
the CuG2 dendrimer was calculated with the MSEED program.[10]
First we calculated the area of exposure to the solvent for CuG0 and
G1CO2tBu, which amounted to 620 2 and 840 2, respectively. Since
for CuG2 the surface available to the solvent is 6710 2, the exposure
of the central core amounts, at most, to about 10%. For CuG3 this can
assumed to be less than 5%. If we consider that in the apolar CH2Cl2
medium the counterion is likely to be in tight vicinity to the
Received: May 31, 1999
Revised version: July 23, 1999 [Z13491IE]
[Cu(phen)2] central core, we can conclude that the interior of the
dendrimer is virtually inaccessible to external contact.
[10] G. Perrot, B. Cheng, K. D. Gibson, J. Vila, K. A. Palmer, A. Nayeem,
B. Maigret, H. A. Sheraga, J. Comput. Chem. 1992, 13, 1.
[11] C. C. Phifer, D. R. McMillin, Inorg. Chem. 1986, 25, 1329.
[12] F. Vögtle, I. Lüer, V. Balzani, N. Armaroli, Angew. Chem. 1991, 30,
1367; Angew. Chem. Int. Ed. Engl. 1991, 30, 1333.
German version: Angew. Chem. 1999, 111, 3895 ± 3899
Keywords: copper ´ dendrimers ´ electrochemistry ´ full-
erenes ´ UV/Vis spectroscopy
[13] N. Armaroli, F. Diederich, C. O. Dietrich-Buchecker, L. Flamigni, G.
Marconi, J.-F. Nierengarten, J.-P. Sauvage, Chem. Eur. J. 1998, 4, 406.
[14] N. Armaroli, F. Diederich, L. Echegoyen, T. Habicher, L. Flamigni, G.
Marconi, J.-F. Nierengarten, New J. Chem. 1999, 77.
[15] A. D. Bacon, M. C. Zerner, Theor. Chim. Acta 1979, 53, 21.
[16] Phosphorescence from C60 and its derivatives has rarely been reported
and only in matrices below 5 K or at 77 K in presence of solvents that
contain heavy atoms.
[17] For the calculation of the thermodynamic driving force for electronic
excited states from spectroscopic and/or electrochemical parameters,
see V. Balzani, F. Scandola, Supramolecular Photochemistry, Ellis
Horwood, Chichester, 1991, p. 44.
[18] For example, see a) G. L. Gaines III, M. P. OꢁNeil, W. A. Svec, M. P.
Niemeczyk, M. R. Wasielewski, J. Am. Chem. Soc. 1991, 113, 719; b) F.
Scandola, R. Argazzi, C. A. Bignozzi, M. T. Indelli, J. Photochem.
Photobiol. A 1994, 82, 191.
[1] G. R. Newkome, C. N. Moorefield, F. Vögtle, Dendritic Molecules:
Concepts, Synthesis, Perspectives, VCH, Weinheim, 1996.
[2] H.-B. Mekelburger, W. Jaworek, F. Vögtle, Angew. Chem. 1992, 104,
1609; Angew. Chem. Int. Ed. Engl. 1992, 31, 1571; J. Issberner, R.
Moors, F. Vögtle, Angew. Chem. 1994, 106, 2507; Angew. Chem. Int.
Ed. Engl. 1994, 33, 2413.
[3] F. Zeng, S. C. Zimmerman, Chem. Rev. 1997, 97, 1681; D. K. Smith, F.
Diederich, Chem. Eur. J. 1998, 4, 1353; A. Archut, F. Vögtle, Chem.
Soc. Rev. 1998, 27, 233; H. Frey, Angew. Chem. 1998, 110, 2313; Angew.
Chem. Int. Ed. 1998, 37, 2193; M. Fischer, F. Vögtle, Angew. Chem.
1999, 111, 934; Angew. Chem. Int. Ed. 1999, 38, 884; M. A. Hearshaw,
J. R. Moss, Chem. Commun. 1999, 1.
[4] S. Campagna, G. Denti, S. Serroni, A. Juris, M. Venturi, V. Ricevuto, V.
Balzani, Chem. Eur. J. 1995, 1, 211; A. Bar-Haim, J. Klafter, R.
Kopelman, J. Am. Chem. Soc. 1997, 119, 6197; S. Serroni, A. Juris, M.
Venturi, S. Campagna, I. Resino Resino, G. Denti, A. Credi, V.
Balzani, J. Mater. Chem. 1997, 7, 1227; D.-L. Jiang, T. Aida, Nature
1997, 388, 454; R. Kopelman, M. Shortreed, Z.-Y. Shi, W. Tan, Z. Xu,
J. S. Moore, A. Bar-Haim, J. Klafter, J. Phys. Chem. B 1997, 101, 6318;
V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, M. Venturi,
Acc. Chem. Res. 1998, 31, 26.
2-Phenylquinoline ± Carbohydrate Hybrids:
Molecular Design, Chemical Synthesis, and
Evaluation of a New Family of Light-
Activatable DNA-Cleaving Agents**
Â
[5] Recent examples: C. J. Hawker, K. L. Wooley, J. M. J. Frechet, J. Am.
Chem. Soc. 1993, 115, 7638; P. J. Dandliker, F. Diederich, M. Gross,
C. B. Knobler, A. Louati, E. M. Sanford, Angew. Chem. 1994, 106,
1821; Angew. Chem. Int. Ed. Engl. 1994, 33, 1739; P. J. Dandliker, F.
Diederich, J.-P. Gisselbrecht, A. Louati, M. Gross, Angew. Chem.
1995, 107, 2906; Angew. Chem. Int. Ed. Engl. 1995, 34, 2725; H.-F.
Chow, I. Y.-K. Chan, D. T. W. Chan, R. W. M. Kwok, Chem. Eur. J.
1996, 2, 1085; E. C. Constable, P. Haverson, M. Oberholzer, Chem.
Commun. 1996, 1821; J. P. Collman, L. Fu, A. Zingg, F. Diederich,
Chem. Commun. 1997, 193; J. Issberg, F. Vögtle, L. De Cola, V.
Balzani, Chem. Eur. J. 1997, 3, 706; G. R. Newkome, E. He, J. Mater.
Chem. 1997, 7, 1237; X. Camps, H. Schönberger, A. Hirsch, Chem. Eur.
J. 1997, 3, 561; I. Jestin, E. Levillain, J. Roncali, Chem. Commun. 1998,
2655; A. P. H. J. Schenning, R. E. Martin, M. Ito, F. Diederich, C.
Boudon, J.-P. Gisselbrecht, M. Gross, Chem. Commun. 1998, 1013;
Kazunobu Toshima,* Ryusuke Takano, Yutaka Maeda,
Masataka Suzuki, Akira Asai, and Shuichi Matsumura
The development of photochemical DNA-cleaving agents,
which selectively cleave DNA by irradiation with light with a
specific wavelength under mild conditions and without any
additives such as metals and reducing agents, is very interest-
[*] Prof. Dr. K. Toshima, R. Takano, Y. Maeda, M. Suzuki,
Prof. Dr. S. Matsumura
Â
P. R. L. Malenfant, L. Groenendaal, J. M. J. Frechet, J. Am. Chem.
Soc. 1998, 120, 10990; F. Cardullo, F. Diederich, E. Echegoyen, T.
Habicher, N. Jayaraman, R. M. Leblanc, J. F. Stoddart, S. Wang,
Langmuir 1998, 14, 1955; P. Bhyrappa, G. Vaijayanthimala, K. S.
Suslick, J. Am. Chem. Soc. 1999, 121, 262; M. Plevoets, F. Vögtle, L.
De Cola, V. Balzani, New J. Chem. 1999, 63; M. Enomoto, T. Aida, J.
Am. Chem. Soc. 1999, 121, 874.
Department of Applied Chemistry, Faculty of Science
and Technology
Keio University, 3-14-1 Hiyoshi
Kohoku-ku, Yokohama 223-8522 (Japan)
Fax : ( 81)45-563-0446
[6] J.-F. Nierengarten, D. Felder, J.-F. Nicoud, Tetrahedron Lett. 1999, 40,
273.
Dr. A. Asai
Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd.
3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533 (Japan)
[7] a) J.-F. Nierengarten, T. Habicher, R. Kessinger, F. Cardullo, F.
Diederich, V. Gramlich, J.-P. Gisselbrecht, C. Boudon, M. Gross, Helv.
Chim. Acta 1997, 80, 2238; b) J.-F. Nierengarten, C. Schall, J.-F.
Nicoud, Angew. Chem. 1998, 110, 2037; Angew. Chem. Int. Ed. 1998,
37, 1934; c) R. Kessinger, M. Gomez-Lopez, C. Boudon, J.-P.
[**] This research was partially supported by a Grant-in-Aid for Encour-
agement of Young Scientists from the Ministry of Education, Science,
Sports and Culture (Japan).
Angew. Chem. Int. Ed. 1999, 38, No. 24
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3824-3733 $ 17.50+.50/0
3733