pubs.acs.org/joc
plethora of nitrogen-containing derivatives.2 Furthermore,
Synthesis of Substituted Pyrrolin-4-ones from Amino
Acids in Mild Conditions via a Gold-Catalyzed
Approach
they are also used as useful chiral auxiliaries and ligands for
asymmetric syntheses.3
Many methodologies have been reported for their synth-
eses over the years.4 More recently, much work has been
focused on metal-mediated approaches from unsaturated
amines5 or diazo compounds.6 Nevertheless, the develop-
ment of flexible strategies that would allow for a stereose-
lective construction of multisubstituted pyrrolidine deri-
vatives employing versatile building blocks is still highly
desirable. Therefore, although R-amino-ynones are easily
accessible from R-amino acids, their use as intermediates for
the synthesis of enantiopure pyrrolidine derivatives has
remained largely unexplored. In a seemingly unique contri-
bution, Overhand and Hecht7 reported a mercury-promoted
approach. Nevertheless their strategy required a stoichio-
metric amount of mercuric acetate to achieve the ring
closure.
ꢀ
Nicolas Gouault,* Myriam Le Roch, Carole Cornee,
ꢁ
Michele David, and Philippe Uriac
ꢀ
ꢀ
EA Substances Licheniques et Photoprotection, Universite de
Rennes1, 2 avenue du Pr. Leon Bernard, 35043 Rennes Cedex,
ꢀ
France
Received April 2, 2009
In this context, we decided to explore the use of the
chiral pool of amino acids combined with the potential of
gold for the synthesis of pyrrolin-4-ones that could
be used for further transformations (Scheme 1). The
above-mentioned approach reported by Overhand and
Hecht did not allow the isolation of pyrrolin-4-one deri-
vatives (I). Actually the use of mercuric salt afforded an
intermediate organomercuric chloride that must be sub-
jected to reductive demercuration with sodium borohy-
dride leading to an hydroxypyrrolidine (II). Due to its
ability to coordinate and activate carbon-carbon multi-
ple bonds toward the intramolecular addition of a variety
of nucleophiles, gold-catalysis emerged as the preferred
choice.8 Thus, the addition of various nucleophiles to
alkynes offered a fascinating opportunity to build up
several complex cyclic molecules under extremely mild
conditions.
Initially, a series of R-amino-ynone derivatives 1a-l was
generated from commercially available amino acids via
Weinreb amide formation and subsequent addition of var-
ious lithium acetylides (Table 1). The enantiomeric purity of
the intermediate 1a was confirmed by chiral HPLC to be
>99% ee, suggesting that minimal racemization had oc-
curred during the process. Thus amino-ynones 1a-l could be
produced in two steps with moderate to good overall yield
from corresponding L-amino acids.
The gold-catalyzed cyclization of various R-amino-ynone
derivatives gave the corresponding pyrrolin-4-ones in
high yields. Moreover, the use of gold(III) oxide as
catalyst allows a moderate to total stereocontrol during
the cyclization. These pyrrolin-4-ones are highly useful
intermediates for the synthesis of functionalized pyrroli-
dines and other natural products.
Functionalized pyrrolines and pyrrolidines are found in a
broad array of biologically active natural products1 and are
used as excellent building blocks for the synthesis of a
(1) (a) O’Hagen, D. Nat. Prod. Rep. 2000, 17, 435. (b) Mauger, A. B. J.
Nat. Prod. 1996, 59, 1205. (c) Huwe, C. M.; Blechert, S. Tetrahedron Lett.
1995, 36, 1621. (d) Anderson, W. K.; Milowsky, A. S. J. Med. Chem. 1987, 30,
2144. (e) Schwartz, R. E.; Liesch, J.; Hensens, O.; Zitano, L.; Honeycutt, S.;
Garrity, G.; Fromtling, R. A.; Onishi, J.; Monaghan, R. J. Antibiot. 1988, 41,
1774. (f) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68,
1556.
(2) Liddell, J. R. Nat. Prod. Rep. 2002, 19, 773.
(3) (a) Kim, B. H.; Lee, H. B.; Hwang, J. K.; Kim, Y. G. Tetrahedron:
Asymmetry 2005, 16, 1215. (b) Nyerges, M.; Bendell, D.; Arany, A.; Hibbs,
D. E.; Coles, S. J.; Hursthouse, M. D.; Groundwater, P. W.; Meth-Cohn, O.
Synlett 2003, 947. (c) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M.
Chem. Rev. 2000, 100, 2159. (d) Sweet, J. A.; Cavallari, J. M.; Price, W. A.;
Ziller, J. W.; McGrath, D. V. Tetrahedron: Asymmetry 1997, 8, 207.
We then performed a catalyst screening to optimize the
cyclization conditions. In this way, substrate 1a was sub-
jected to various catalysts and other activating agents in
different conditions (Table 2).
ꢁ
(4) (a) Pichon, M.; Figadere, B. Tetrahedron: Asymmetry 1996, 7, 927
and references cited therein. (b) Katritzky, A. R.; Cui, X.-J.; Yang, B.; Steel,
P. J. J. Org. Chem. 1999, 64, 1979. (c) Ballini, R.; Bosica, G.; Fiorini, D.;
Palmieri, A.; Petrini, M. Chem. Rev. 2005, 105, 933.
(6) (a) Davis, F. A.; Fang, T.; Goswami, R. Org. Lett. 2002, 4, 1599. (b)
Davis, F. A.; Yang, B.; Deng, J. J. Org. Chem. 2003, 68, 5147. (c) Dong, C.;
Mo, F.; Wang, J. J. Org. Chem. 2008, 73, 1971.
(7) Overhand, M.; Hecht, S. M. J. Org. Chem. 1994, 59, 4721.
(8) (a) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108,
(5) (a) Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121. (b) Dieter, R. K.;
Chen, N.; Gore, V. K. J. Org. Chem. 2006, 71, 8755. (c) Dieter, R. K.; Yu, H.
Org. Lett. 2001, 3, 3855. (d) Ma, S.; Yu, F.; Gao, W. J. Org. Chem. 2003, 68,
5943. (e) Ohno, H.; Kadoh, Y.; Fujii, N.; Tanaka, T. Org. Lett. 2006, 8, 947.
(f) Fox, D. N. A.; Lathbury, D.; Mahon, M. F.; Molly, K. C.; Gallagher, T. J.
Chem. Soc., Chem. Commun. 1989, 1073. (g) Zhang, Z.; Bender, C. F.;
Widenhoefer, R. A. Org. Lett. 2007, 9, 2887. (h) Lalonde, R. L.; Sherry, B.
D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452. (i) Munoz,
M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005,
24, 1293. (j) Beaudouin Bertrand, M.; Leathen, M. L.; Wolfe, J. P. Org. Lett.
2007, 9, 457.
€
3351. (b) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410.
(c) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766. (d) Asao,
N. Synlett 2006, 1645. (e) Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem.
2006, 4555. (f) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (g)
Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990. (h) Jimenez-Nunez,
E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (i) Arcadi, A. Chem. Rev.
2008, 108, 3266.
5614 J. Org. Chem. 2009, 74, 5614–5617
Published on Web 06/10/2009
DOI: 10.1021/jo900693a
r
2009 American Chemical Society