4034
K. Miyamoto et al. / Tetrahedron Letters 52 (2011) 4030–4035
Figure 5. Fluorescence changes in the Q band of g-free TPP (a) and C12-g-TPP (5
lM) with addition of Cn-g-Pyr (n = 4 (b) and 12 (c)) in cyclohexane-THF (15:1) at 10 °C.
Excitation wavelength: 350 nm.
7. Ihara, H.; Yoshitake, M.; Takafuji, M.; Yamada, T.; Sagawa, T.; Hirayama, C. Liq.
Cryst. 1999, 26, 1021; Ihara, H.; Takafuji, M.; Sakurai, T.; Katsumoto, M.;
Ushijima, N.; Shirosaki, T.; Hachisako, H. Org. Biomol. Chem. 2003, 1, 3004.
8. Li, Y.; Wang, T.; Liu, M. Soft Matter 2007, 3, 1312; Li, Y.; Liu, M. Chem. Commun.
2008, 5571.
9. Pal, A.; Ghosh, Y. K.; Bhattacharya, S. Tetrahedron 2007, 63, 7334; Palui, G.;
Simon, F. ois-X.; Schmutz, M.; Mesini, P. J.; Banerjee, A. Tetrahedron 2008, 64,
175.
C12-g-TPP showed the most effective enhancement of the emission
intensity based on the porphyrin moiety when compared with
mixed systems of C4-g-Pyr with g-free TPP and C12-g-Pyr with
C12-g-TPP. These findings indicate that the alkyl chain length not
only influences the molecular orientation among pyrene moieties,
but also provides a chance to form the preferable molecular fitting
for FRET.
10. Sagawa, T.; Fukugawa, S.; Yamada, T.; Ihara, H. Langmuir 2002, 18, 7223.
11. N2,N3-Dibutyl-N-[4-(1-pyrenylbutyroyl)]-
L
-glutamide (C4-g-Pyr): Triethylamine
(0.17 mL, 1.2 mmol) and diethyl-cyanophosphonate (0.17 mL, 1.1 mmol) were
added dropwise to the solution of N2,N3-dibutyl-
-glutamide (0.22 g,
Acknowledgment
L
0.86 mmol) and 1-pyrenylbutylic acid (0.297 g, 1.03 mmol) in chloroform
(100 mL) at 0 °C. The reaction solution was stirred for 2 h at 0 °C and then 12 h
at room temperature. The mixture solution was washed with aq NaOH solution
(0.2 N, 3 Â 50 mL), aq. HCl (0.1 N, 3 Â 50 mL), and water (50 mL). After the
organic layer was dried over Na2SO4, the filtrate was concentrated under
reduced pressure. The residue was recrystallized from ethanol to yield a
desired product as a yellow powder (0.27 g, 58%); mp 213–214 °C; FT-IR (KBr)
This work was supported in part by financial support of Japan
Society for the Promotion of Science Bilateral Joint Projects.
Supplementary data
m
3290, 3093, 3041, 2957, 2932, 2871, 1637, 1543 cmÀ1 1H NMR (400 MHz;
;
CDCl3) d 0.87–0.91 (6H, m, CH2CH3), 1.28–1.35 (4H, m, CH2CH3), 1.41–1.50 (4H,
m, NHCH2CH2), 1.90–2.10 (2H, m, CH2CH2Ar), 2.19–2.45 (2H, m, CH2CÃH),
2.19–2.26 (2H, m, C(@O)CH2(CH2)2Ar), 2.36–2.40 (2H, m, C(@O)CH2CH2CÃH),
3.15–3.36 (4H, m, CH2NH), 3.37–3.75 (2H, CH2Ar), 4.34 (1H, q, J = 4.9 Hz, CÃH),
5.91–5.92 (1H, br, NH), 6.77–6.79 (1H, br, NH), 7.02–7.04 (1H, br, NH), 7.85–
8.30 (9H, m, ArH); Anal. Calcd for C33H41N3O3 + 0.5H2O: C, 73.85; H, 7.89; N,
7.83. Found: C, 74.11; H, 7.74; N, 7.83.
Supplementary data (synthesis and characterization of pyrene-
derivatives. Experimental detail: TEM measurements, fluorescence
and UV–vis spectroscopies) associated with this article can be
These data include MOL files and InChiKeys of the most important
compounds described in this article.
N2,N3-Dioctyl-N-[4-(1-pyrenylbutyroyl)]-
cyanophosphonate (0.30 mL, 2.0 mmol) were added dropwise to the solution
of N2,N3-dioctyl-
-glutamide (0.692 g, 1.08 mmol), 1-pyrenylbutylic acid
L-glutamide
(C8-g-Pyr):
diethyl-
L
References and notes
(0.486 g, 1.69 mmol) and triethylamine (0.30 mL, 2.2 mmol) in chloroform
(100 mL) at 0 °C. The reaction solution was stirred for 2 h at 0 °C and then 12 h
at room temperature. The mixture solution was washed with aq NaOH solution
(0.2 N, 3 Â 50 mL), aq HCl (0.1 N, 3 Â 50 mL), and water (50 mL). After the
organic layer was dried over Na2SO4, the filtrate was concentrated in vacuo.
The residue was recrystallized from ethanol to yield a desired product as a
1. McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.;
Papiz, M. Z.; Cogdell, R. J.; Isaaca, N. W. Nature 1995, 374, 517; Roszak, A. W.;
Howard, T. D.; Southall, J.; Gardiner, A. T.; Law, C. J.; Isaacs, N. W.; Cogdell, R. J.
Science 2003, 302, 1969; Egawa, A.; Fujiwara, T.; Mizoguchi, T.; Kakitani, Y.;
Koyama, Y.; Akutsu, H. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 790; Goering, B. K.
Ph.D. Dissertation, Cornell University, 1995.
2. Balaban, T. S. Acc. Chem. Res. 2005, 38, 612; Melkozernov, A. N.; Barber, J.;
Blankenship, R. E. Biochemistry 2006, 45, 331; Huijser, A.; Marek, P. L.; Savenije,
T. J.; Siebbeles, L. D. A.; Scherer, T.; Hauschild, R.; Szmytkowski, J.; Kalt, H.;
Hahn, H.; Balabvan, T. S. J. Phys. Chem. C 2007, 111, 11726; Buchanan, J. G.;
Sable, H. Z. In Selective Organic Transformations; Thyagarajan, B. S., Ed.; Wiley-
Interscience: New York, 1972; Vol. 2, pp 1–95.
yellow solid powder (0.87 g, 81%): mp 201–202 °C, FT-IR (KBr)
m 3287, 3091,
3040, 2925, 2854, 1637, 1543 cmÀ1 1H NMR (400 MHz; CDCl3) d 0.85–0.89
;
(6H, q, J = 6.50, CH3), 1.20–1.26 (10H, br, CH2CH3), 1.42–1.49 (4H, m,
NHCH2CH2), 1.91–2.05 (2H, m, ArCH2CH2), 2.19–2.40 (2H, m, CH2CÃH), 2.18–
2.25 (2H, m, Ar(CH2)2CH2C@O), 2.35–2.40 (2H, m, CÃHCH2CH2C@O), 3.15–3.24
(4H, m, NHCH2), 3.35–3.39 (2H, ArCH2), 4.36 (1H, q, J = 6.5 Hz, CÃH–NH), 5.94–
5.96 (1H, br, NH), 6.82–6.85 (1H, br, NH), 7.03–7.05 (1H, br, NH), 7.84–8.29 (9H,
m, ArH); Anal. Calcd for C41H57N3O3 + 0.5H2O: C, 75.89; H, 9.01; N, 6.48. Found:
C, 76.2; H, 8.85; N, 6.52.
3. Pasc-Banu, A.; Stan, R.; Blanzat, M.; Perez, E.; Rico-Lattes, I.; Lattes, A.; Labrot,
T.; Oda, R. Colloids Surf., A 2004, 242, 195; Ihara, H.; Takafuji, M.; Sakurai, T. In
Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H. S., Ed.; American
Scientific Publishers: California, CA, 2004; Vol. 9, pp 473–495.
12. Ikariya, T., In: Chemical Society of Japan (Kagakubinran), 5th ed.; Iwasawa, Y.,
Ed.; Maruzen: Tokyo, 2004; Vol. 1, pp 770–777.
13. Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133; van Esch, J. H.; Feringa, B. L.
Angew. Chem. Int. Ed. 2000, 39, 2263; Shimizu, T.; Masuda, M.; Minamikawa, H.
Chem. Rev. 2005, 105, 1401; Oda, R. In Molecular Gels: Materials with Self-
Assembled Fibrillar Networks; Weiss, R. G., Terech, P., Eds.; Springer: Berlin,
2006; pp 577–612.
4. Andrews, J. I. M.; Tabor, B. A. Tetrahedron 1999, 55, 11711.
5. Nakashima, N.; Asakuma, S.; Kim, J.; Kunitake, T. Chem. Lett. 1984, 1709; Ariga,
K.; Kikuchi, J.; Naito, M.; Koyama, E.; Norihiro Yamada, N. Langmuir 2000, 16,
4929.
6. Yamada, K.; Ihara, H.; Ide, T.; Fukumoto, T.; Hirayama, C. Chem. Lett. 1984, 13,
1713; Ihara, H.; Takafuji, M.; Hirayama, C.; O’Brien, D. F. Langmuir 1992, 8, 1548.
14. Matile, S.; Berova, N.; Nakanishi, K.; Fleischhauer, J.; Woody, W. R. J. Am. Chem.
Soc. 1996, 188, 5198; Simonyi, M.; Bikádi, Z.; Zsila, F.; Deli, J. Chirality 2003, 15,