J . Org. Chem. 2000, 65, 969-973
969
En th a lp ic a n d En tr op ic Con tr ibu tion s to th e Con for m a tion a l F r ee
En er gies of Meth ylth io, Meth ylsu lfin yl, Meth ylsu lfon yl,
P h en ylth io, P h en ylsu lfin yl, a n d P h en ylsu lfon yl [S(O)n R, n ) 0, 1, 2;
R ) CH3, P h ] Gr ou p s in Cycloh exa n e
Eusebio J uaristi,* Victoria Labastida, and Sandra Antu´nez
Departamento de Quı´mica, Centro de Investigacio´n y de Estudios Avanzados del Instituto Polite´cnico
Nacional, Apartado Postal 14-740, 07000 Me´xico, D.F., Me´xico
Received J uly 26, 1999
A variable-temperature NMR study of (cis-4-methylcyclohexyl)methyl sulfide (1), sulfoxide (2), and
sulfone (3), as well as (cis-4-methylcyclohexyl)phenyl sulfide (4), sulfoxide (5), and sulfone (6) allowed
determination of the thermodynamic parameters, ∆H° and ∆S°, for the title groups. Reproduction
of the experimental results with Allinger’s MM3 program was successfully accomplished in the
case of the sulfoxide and sulfide groups. Nevertheless, modification of the original force field torsional
parameters was required in order to adequately reproduce the experimentally observed behavior
of the sulfonyl derivatives. Rationalization of the enthalpic and entropic contributions to ∆G°
[S(O)nR, n ) 0, 1, 2; R ) CH3, Ph] is advanced in terms of the steric characteristics of these sulfur-
containing groups and the resulting rotameric populations in the axial and equatorial monosub-
stituted cyclohexanes.
Ta ble 1. En th a lp ic a n d En tr op ic Con tr ibu tion s to th e
Con for m a tion a l F r ee En er gy Differ en ces (∆G°298K) of
Releva n t Alk yl Gr ou p s (eq 1)4-6
In tr od u ction
The conformational behavior of monosubstituted cy-
clohexanes is of fundamental importance in organic
chemistry since it effectively models larger and more
complex molecules.1 Alkyl groups prefer equatorial over
axial positions in order to prevent the repulsive steric
interactions with the C(3,5) methylenes (eq 1), and it is
usually observed that the bulkier the alkyl group the
larger the preference for the equatorial form.2
entry
R
∆H°
∆S°
∆G°298K
1
2
3
4
5
Me
Et
i-Pr
Bn
-1.75
-1.60
-1.52
-1.52
-5.00
-0.03
+0.64
+2.31
+0.81
-0.44
-1.74
-1.79
-2.21
-1.76
-4.87
t-Bu
Furthermore, the benzyl group exhibits similar thermo-
dynamic behavior (entry 4 in Table 1),5 whereas by
contrast, the axial isomer of tert-butylcyclohexane has
greater entropy in the axial relative to the equatorial
isomer (entry 5 in Table 1).6
The interesting observations described in the previous
paragraph have been well discussed in the literature3-6
and provide convincing evidence that a proper under-
standing of conformational behavior is viable only with
adequate knowledge of the enthalpic and entropic con-
tributions to ∆G°. Indeed, such dissection of conforma-
tional energies into ∆H° and ∆S° components has been
essential for interpretation of the conformational behav-
ior of various substituted heterocycles.7-10
In this context, force-field calculations3 and experi-
mental NMR data4 showed that while the conformational
free energy differences (∆G° values) increase along the
series methyl f ethyl f isopropyl, the enthalpic contri-
butions to the equatorial preference actually decrease
along this series (entries 1-3 in Table 1), so that it is
the T∆S° term that accounts for the observed trend.
* To whom correspondence should be addressed. E-mail: juaristi@
relaq.mx.
Two decades ago, Eliel and Kandasamy determined the
conformational energies of the methylthio, methylsulfi-
nyl, and methylsulfonyl groups by low-temperature 13C
(1) (a) Barton, D. H. R. Experientia 1950, 6, 316. (b) Winstein, S.;
Holness, N. J . J . Am. Chem. Soc. 1955, 77, 5562. (c) Eliel, E. L.;
Allinger, N. L.; Angyal, S. J .; Morrison, G. A. Conformational Analysis;
Interscience: New York, 1965. (d) J uaristi, E. Introduction to Stere-
ochemistry and Conformational Analysis; Wiley: New York, 1991. (e)
J uaristi, E., Ed. Conformational Behavior of Six-Membered Rings:
Analysis, Dynamics, and Stereoelectronic Effects; VCH Publishers:
New York, 1995.
(2) (a) Hirsch, J . A. Top Stereochem. 1967, 1, 199. (b) Bushweller,
C. H. Stereodynamics of Cyclohexane and Substituted Cyclohexanes.
Substituent A-Values; Chapter 2 in ref 1e.
(3) Allinger, N. L.; Hirsch, J . A.; Miller, M. A.; Tyminski, I. J .; Van-
Catledge, F. A. J . Am. Chem. Soc. 1968, 90, 1199.
(5) J uaristi, E.; Labastida, V.; Antu´nez, S. J . Org. Chem. 1991, 56,
4802.
(6) Antu´nez, S.; J uaristi, E. J . Org. Chem. 1996, 61, 6465.
(7) Bailey, W. F.; Connon, H.; Eliel, E. L.; Wiberg, K. B. J . Am.
Chem. Soc. 1978, 100, 2202.
(8) (a) Booth, H.; Grindley, T. B.; Khedhair, K. A. J . Chem. Soc.,
Chem. Commun. 1982, 1047 (b) Booth, H.; Readshaw, S. A. Tetrahe-
dron 1990, 46, 2097. (c) Booth, H.; Dixon, J . M.; Readshaw, S. A.
Tetrahedron 1992, 48, 6151.
(4) (a) Booth, H.; Everett, J . R., J . Chem. Soc., Perkin Trans. 2 1980,
255. (b) See, also: Wiberg, K. B.; Hammer, J . D.; Castejon, H.; Bailey,
W. F.; DeLeon, E. L.; J arret, R. M. J . Org. Chem. 1999, 64, 2085. (c)
See, also: Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of
Organic Compounds; J ohn Wiley & Sons: New York, 1994.
(9) (a) J uaristi, E.; Gonza´lez, E. A.; Pinto, B. M.; J ohnston, B. D.;
Nagelkerke, R. J . Am. Chem. Soc. 1989, 111, 6745. (b) J uaristi, E. Acc.
Chem. Res. 1989, 22, 357.
(10) (a) J uaristi, E.; Cuevas, G. Tetrahedron Lett. 1992, 33, 2271.
(b) J uaristi, E.; Cuevas, G. J . Am. Chem. Soc. 1993, 115, 1313.
10.1021/jo991181u CCC: $19.00 © 2000 American Chemical Society
Published on Web 02/02/2000