405
of its NMR spectroscopic data with those in the literature.8 The tricyclic ketone 10 is produced from the
selenyl ester 7c by way of formation of the acyl radical 2 and 5-exo-trig radical cyclisation involving
the α-ketenyl radical counterpart 8 leading initially to the spiro-ketene radical intermediate 9. A 5-exo-
dig radical cyclisation into the ketene electrophore in 9 then leads to the enolate radical 11 which, on
quenching by H·, produces 10 (Scheme 3).
The synthesis of (±)-pentalenene 1 was completed following deprotonation and α-methylation of
10, using LDA and MeI, leading to 12, reduction of 12 to the corresponding carbinol 13, and finally
dehydration of 13 in hot benzene in the presence of PTSA (Scheme 4).
Scheme 4. Reagents: (i) LDA, THF, then MeI, 37%; (ii) NaBH4, MeOH, 52%; (iii) p-TsOH, benzene, ∆, 70%
The synthetic (±)-pentalenene displayed spectroscopic data which were identical to those reported in
the literature and from an earlier synthesis reported from our laboratory.9
Acknowledgements
We thank the Commonwealth Scholarship Commission for a scholarship to N.M.H.-F.
References
1. (a) Seo, J.; Fain, H.; Blanc, J.-B.; Montgomery, J. J. Org. Chem. 1999, 64, 6060; (b) Kim, S.; Cheong, J. H.; Yoo, J. Synlett
1998, 981; (c) Miesch, M.; Miesch-Gross, L.; Franck-Neumann, M. Tetrahedron 1997, 53, 2111 and extensive references
cited therein.
2. Seemann, M.; Zhai, G.; Umezawa, K.; Cane, D. J. Am. Chem. Soc. 1999, 121, 591.
3. See for example: Ref. 1b; Devin, P.; Fensterbank, L.; Malacria, M. J. Org. Chem. 1998, 63, 6764; Jasperse, C. P.; Curran, D.
P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237 and references cited therein.
4. Hayes, C. J.; Pattenden, G. Tetrahedron Lett. 1996, 37, 271; De Boeck, B.; Pattenden, G. Tetrahedron Lett. 1998, 39, 6975;
Herbert, N.; Pattenden, G. Synlett 1997, 69; De Boeck, B.; Herbert, N.; Pattenden, G. Tetrahedron Lett. 1998, 39, 6971;
Harrington-Frost, N. M.; Pattenden, G. Synlett 1999, in press.
5. Davies, H. M. L.; Doan, B. D. J. Org. Chem. 1998, 63, 657.
6. All new compounds showed satisfactory spectroscopic data together with microanalytical and/or mass spectrometry data.
Selected spectroscopic data: Compound 10: νmax/cm−1 (film) 1737; δH (500 MHz) 0.97 (d, J 6.9, 3H, CH3CH), 0.99 (s, 3H,
CH3), 1.01 (s, 3H, CH3), 1.30–1.38 (m, 3H, 3×CHH), 1.63 (dd, J 7.0, 12.9, 1H, C(O)CHCHH), 1.72 (dd, J 12.9, 9.5, 1H,
C(O)CHCHH), 1.79–1.86 (m, 2H, 2×CHH), 1.86–1.95 (m, 1H, CH3CH), 2.07–2.14 (m, 2H, CHH and C(O)CHH), 2.40–2.47
(m, 2H, C(O)CH and CH2CHCH2), 2.78 (dd, J 18.6, 9.2, 1H, C(O)CHH); δC (500 MHz) 15.5 (CH3CH), 29.2 (CH3), 29.5
(CH3), 31.3 (CH2), 34.4 (CH2), 41.2 (quat. CMe2), 42.9 (CH), 44.6 (CH2), 45.8 (CH), 46.8 (CH2), 47.9 (CH2), 59.4 (CH),
62.7 (quat. C), 222.9 (C_O); m/z 206.1678 (M+ C14H22O requires M+, 206.1671).
7. Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198.
8. Wu, Y.-J.; Zhu, Y.-Y.; Burnell, D. J. J. Org. Chem. 1994, 59, 104.
9. Pattenden, G.; Teague, S. J. Tetrahedron 1987, 43, 5637.