J. R. Falck et al. / Tetrahedron Letters 47 (2006) 5111–5113
5113
8. THF/tetrabutylammonium peroxydisulfate: Jung, J. C.;
Choi, H. C.; Kim, Y. H. Tetrahedron Lett. 1993, 34, 3581–
3584.
9. p-TsCl/NaH/THF: Yu, B.; Hui, Y. Synth. Commun. 1995,
25, 2037–2042.
10. BrCCl3/2,4,6-collidine: Barks, J. M.; Gilbert, B. C.;
Parsons, A. F.; Upeandran, B. Tetrahedron Lett. 2000,
41, 6249.
11. tert-Butylperoxy-k3-iodane/CCl4: Ochiai, M.; Sueda, T.
Tetrahedron Lett. 2004, 45, 3557.
12. Baati, R.; Valleix, A.; Mioskowski, C.; Barma, D. K.;
Falck, J. R. Org. Lett. 2000, 2, 485–487.
13. Seiders, J. R., II; Wang, L.; Floreancig, P. E. J. Am. Chem.
Soc. 2003, 125, 2406.
14. Mn(0) powder was purchased from Aldrich Chem. (99%,
À325 mesh). While it could be weighed and handled
without special precautions, it was stored under an inert
atmosphere to help retain its full reactivity.
Scheme 1.
General Procedure: CCl4 (0.145 mL, 1.5 mmol,
1.5 equiv) was added via syringe to a stirring suspension
of alcohol (1 mmol, 1.0 equiv) and Mn(0) powder14 (83
mg, 1.5 mmol, 1.5 equiv) in anhydrous THF (3 mL) un-
der an argon atmosphere and then warmed to 65 °C. A
white precipitate of MnCl2 accumulated during the
course of the reaction. After the time periods indicated
in Table 1, the reaction mixture was cooled to room
temperature, diluted with ether (20 mL), filtered through
a pad of silica gel, and the filter cake was washed with
ether. In most cases, the residue after concentration in
vacuo required no further purification, but if necessary,
was passed over a SiO2 column to give the correspond-
ing THF ether in indicated yields (Table 1).
15. Spectral data for 6 (ꢀ1:1 diastereomeric mixture): 1H
NMR (300 MHz, CDCl3) d 5.86–5.68 (m, 4H), 5.32 (dd,
J = 4.2, 2.1 Hz, 1H), 5.29 (dd, J = 4.2, 1.8 Hz, 1H), 4.18–
4.11 (m, 2H), 3.94–3.82 (m, 4H), 2.02–1.84 (m, 20H); 13C
NMR (75 MHz, CDCl3) d 131.0, 130.6, 129.2, 127.9,
103.3, 102.0, 70.9, 69.7, 66.8 (2C), 32.9, 32.7, 30.5, 28.4,
25.3, 25.2, 23.7 (2C), 19.6, 19.4; HRMS (CI, CH4) calcd
for C10H17O2 (M+1) m/e 169.1228, found 169.1230.
Compound 16 (ꢀ1:1 diastereomeric mixture): 1H NMR
(400 MHz, CDCl3) d 5.87 (d, J = 4.0 Hz, 1H), 5.84 (d,
J = 3.2 Hz, 1H), 5.31 (t, J = 2.8 Hz, 1H), 5.24 (br s, 1H),
4.60 (d, J = 3.2 Hz, 1H), 4.51 (d, J = 3.6 Hz, 1H), 4.31 (d,
J = 3.6 Hz, 1H), 4.26–4.16 (m, 4H), 4.11–3.99 (m, 2H),
3.98–3.86 (m, 6H), 1.99–1.83 (m, 8H), 1.49 (s, 6H), 1.42 (s,
6H), 1.34 (s, 6H), 1.31 (s, 6H); 13C NMR (50 MHz,
CDCl3) d 111.8, 109.0, 108.8, 105.3, 101.2, 84.2, 82.4, 81.1,
80.2, 76.4, 72.8, 72.7, 67.4, 67.20, 67.16, 67.1, 32.4, 27.0,
26.9, 26.7, 26.3, 25.5, 23.4, 23.0. Compound 18 (ꢀ1:1
diastereomeric mixture): 1H NMR (400 MHz, CDCl3) d
5.09 (d, J = 3.2 Hz, 1H), 3.88–3.81 (m, 2H), 3.68–3.60 (m,
3H), 3.40–3.34 (m, 1H), 2.01–1.79 (m, 4H), 1.61–1.54 (m,
4H), 0.91 (s, 9H), 0.03 (s, 6H); 13C NMR (75 MHz,
CDCl3) d 103.9, 67.1, 66.8, 63.1, 32.4, 29.7, 26.3, 26.1 (3C),
23.6, 18.5, À5.1 (2C); HRMS (CI, CH4) calcd for
C15H33O3Si (M+1) m/e 289.2199, found 289.2198. Com-
pound 22: 1:1 diastereo mixture; 1H NMR (300 MHz,
CDCl3): d = 5.38 (dd, J = 4.2, 1.8 Hz, 1H), 5.13 (dd,
J = 4.2, 1.8 Hz, 1H), 3.89–3.59 (m, 10H), 3.50–3.41 (m,
2H), 1.84–1.71 (m, 16H), 1.58–1.20 (m, 18H), 0.81–0.77
(m, 6H); 13C NMR (75 MHz, CDCl3): d = 104.0, 103.0,
82.6, 80.0, 78.1, 77.8, 77.7, 68.5, 68.0, 67.0, 66.8, 32.6, 32.5,
32.2, 32.1, 32.0, 30.8, 28.5, 27.3, 26.2, 26.0, 25.6, 25.2, 23.7,
22.8, 22.7, 14.1 (2C); HRMS (CI, CH4) calcd for
C14H27O3 (M+1) m/e 243.1960, found 243.1960. Com-
pound 24 (ꢀ1:1 diastereomeric mixture): 1H NMR
(300 MHz, CDCl3) d 5.72 (s, 2H), 5.39–5.37 (m, 1H),
5.34–5.32 (m, 1H), 3.94–3.88 (m, 2H), 3.79–3.74 (m, 2H),
2.50–2.22 (m, 8H), 2.19–1.24 (m, 26H), 1.24 (s, 3H), 1.22
(s, 3H), 1.21 (s, 3H), 1.19 (s, 3H), 1.02–0.86 (m, 4H), 0.85
(s, 3H), 0.84 (s, 3H); 13C NMR (75 MHz, CDCl3) d 199.8
(2C), 171.1, 171.6, 124.0 (2C), 100.0, 99.6, 86.2, 85.8, 66.9,
66.7, 54.0 (2C), 49.9, 49.8 (2C), 46.6, 46.1, 38.8, 36.6, 36.5,
36.4, 36.1, 35.9 (2C), 34.1 (2C), 33.6, 33.5, 33.0 (2C), 32.6,
32.0 (2C), 31.7, 24.1 (2C), 23.7, 23.3, 23.2, 22.5, 20.9, 20.8,
17.6 (2C), 14.4, 14.2; HRMS (CI, CH4) calcd for
C24H37O3 (M+1) m/e 373.2743, found 373.2740.
In summary, an operationally simple, inexpensive, and
efficient method to make THF ethers has been devel-
oped. Its mild reaction conditions and general tolerance
of most functional groups make it widely applicable in
the synthesis of complex molecules.
Acknowledgments
Financial support was provided by the Robert A. Welch
Foundation, NIH (GM31278, DK38226), and Ministere
`
´ ´ ´ `
´
`
delegue a l’Enseignement superieur et a la Recherche.
References and notes
1. Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Chemistry; Wiley: New York, 1999; Chapter 2, pp
57–58.
2. THF ethers can be selectively cleaved in the presence of
THP ethers, for example, see Refs. 1,3.
3. 2-Chlorotetrahydrofuran: Kruse, C. G.; Broekhof, N. L.
J. M.; van der Gen, A. Tetrahedron Lett. 1976, 20, 1725–
1728.
4. Dihydrofuran: Sosnovsky, G. J. Org. Chem. 1965, 33, 2441.
5. Hon, Y. S.; Lee, C. F. Tetrahedron Lett. 1999, 40, 2389–
2392.
6. Acetal exchange: Kruse, C. G.; Poels, E. K.; Jonkers, F.
L.; van der Gen, A. J. Org. Chem. 1978, 43, 3548.
7. THF/ceric ammonium nitrate: Maione, A. M.; Romeo, A.
Synthesis 1987, 250.
16. Takai, K.; Ueda, T.; Ikeda, N.; Ishiyama, T.; Matsushita,
H. Bull. Chem. Soc. Jpn. 2003, 76, 347–353.