W.-W. Lee, S. Chang / Tetrahedron: Asymmetry 10 (1999) 4473–4475
4475
conversion of the cyclic trans-acetonide of 5 to a different acyclic protecting group. The three successive
protection/deprotection steps (5–8) proceeded with high efficiency (86% yield over three steps). RCM
of the fully protected dienyl compound 8 was effected in refluxing CH2Cl2. The cyclohexenyl product
10 was isolated in 73% yield using 12 mol% of the catalyst 9, which was fed to the reaction mixture
in three portions over 18 h. Deacetylation of 10 provided 3,6-di-O-methyl conduritol-E 11 in an almost
quantitative yield. Its analytical data were completely identical to those reported in the literature4c and
its enantiomeric excess was determined to be >99.7%.13
In conclusion, an enantiomerically pure conduritol-E derivative 11 was efficiently synthesized in 33%
total yield from a cheap and accessible starting chiral compound through a series of routine organic
reactions and eventual RCM process that is currently prevailing.
Acknowledgements
This research was supported by the Center for Molecular Design and Synthesis (CMDS) at KAIST and
by the Ewha Womans University. The authors would like to thank Jooyoung Noh and Young-Ok Kim for
the preliminary experiments.
References
1. (a) Külber, K. Arch. Pharm. 1908, 346, 620. (b) Manni, P. E.; Sinsheimer, J. E. J. Pharm. Sci. 1965, 54, 1541. (c) Legler, G.
Mol. Cell. Biochem. 1973, 2, 31.
2. For a recent review, see: Look, G. C.; Fotsch, C. H.; Wong, C. H. Acc. Chem. Res. 1993, 26, 182.
3. Hudlicky, T.; Entwistle, D. A.; Pitzer, K. K.; Thorpe, A. J. Chem. Rev. 1996, 96, 1195.
4. (a) Hudlicky, T.; Price, J. D.; Olivo, H. Synlett 1991, 645. (b) Takano, S.; Yoshimitsu, T.; Ogasawara, K. J. Org. Chem.
1994, 59, 54. (c) Cere, V.; Peri, F.; Pollicino, S. Tetrahedron Lett. 1997, 38, 7797. (d) Sanfilippo, C.; Patti, A.; Piattelli, M.;
Nicolosi, G. Tetrahedron: Asymmetry 1998, 9, 2809.
5. All new compounds were fully characterized by spectroscopic means: 1H and 13C NMR, IR and HRMS.
6. (a) Ikemoto, N.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 2524. (b) Naito, H.; Kawahara, E.; Maruta, K.; Maeda, M.;
Sasaki, S. J. Org. Chem. 1995, 60, 4419.
7. (Bis)syn-product 5: 1H NMR (250 MHz, CDCl3) δ 5.99–5.92 (m, 2H), 5.42–5.27 (m, 4H), 4.19 (br s, 2H), 3.90 (dd, J=4.4,
1.5 Hz, 2H), 1.55 (br s, 2H), 1.41 (s, 6H); 13C NMR (CDCl3) δ 137.2, 117.5, 109.9, 82.4, 74.3, 27.5; IR (CH2Cl2) cm−1
3368 (broad), 2989, 2891, 1645, 1429, 1166, 996, 930; HRMS (CI) calcd for C11H19O4 [M+H]+ 215.1284, found 215.1286;
[α]2D5=−23.6 (c 1.0, CH2Cl2). (Bis)anti-isomer of 5: 1H NMR (250 MHz, CDCl3) δ 5.95–5.87 (m, 2H), 5.40–5.25 (m, 4H),
4.31 (dd, J=14.2, 6.3 Hz, 2H), 4.03 (m, 2H), 2.88 (bs, 2H), 1.44 (s, 6H).
8. (a) Laib, T.; Chastanet, J.; Zhu, J. J. Org. Chem. 1998, 63, 1709. (b) Mukaiyama, T.; Suzuki, K.; Yamada, T.; Tabusa, F.
Tetrahedron 1990, 46, 265.
9. For some examples on stereoselective addition of various nucleophiles to mono-aldehyde derived from tartrate ester, see:
(a) Majewski, M.; Shao, J.; Nelson, K.; Nowak, P.; Irvine, N. M. Tetrahedron Lett. 1998, 39, 6787. (b) Chattopadhyay, A.;
Dhotare, B. Tetrahedron: Asymmetry 1998, 9, 2715.
10. Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.
11. For some recent examples on the application of RCM to cyclitols or carbohydrates, see: (a) Sellier, O.; Weghe, P. V.; Nouen,
D. L.; Strehler, C.; Eustache, J. Tetrahedron Lett. 1999, 40, 853. (b) Ovaa, H.; Codee, J. D. C.; Lastdrager, B.; Overkleeft,
H. S.; van der Marel, G. A.; van Boom, J. H. Tetrahedron Lett. 1999, 40, 5063. (d) Kapferer, P.; Sarabia, F.; Vasella, A. Helv.
Chim. Acta 1999, 82, 645. (d) Kornienko, A.; d’Alarcao, M. Tetrahedron: Asymmetry 1999, 10, 827.
12. (a) Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 9606. (b) Holder, S.; Blechert, S. Synlett
1996, 505. (c) Hammer, K.; Undheim, K. Tetrahedron 1997, 53, 5925.
13. [α]2D5=+233.40 (c 1.00, CHCl3) [lit.4c [α]D27=−234.04, the enantiomer of 11 (c 1.00, CHCl3)].