363
118, 2758. (f) Tobe, Y.; Matsumoto, H.; Naemura, K.; Achiba, Y.; Wakabayashi, T. Angew. Chem., Int. Ed. Engl. 1996, 35,
1800. (g) Kawase, T.; Darabi, H. R.; Oda, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2664. (h) Cory, R. M.; McPhail, C. L.
Tetrahedron Lett. 1996, 37, 1987. (i) Shetty, A. S.; Fischer, P. R.; Stork, K. F.; Bohn, P. W.; Moore, J. S. J. Am. Chem. Soc.
1996, 118, 9409. (j) Haley, M. M.; Langsdorf, B. L. J. Chem. Soc., Chem. Commun. 1997, 1121. (k) Höger, S.; Meckenstock,
A.-D.; Müller, S. Chem. Eur. J. 1998, 4, 2424. (l) Haberhauer, G.; Rominger, F.; Gleiter, R. Angew. Chem., Int. Ed. Engl.
1998, 37, 3376.
3. (a) Wittig, G.; Klar, G. Liebigs Ann. 1967, 704, 91. (b) Wittig, G.; Rümpler, K.-D. ibid. 1971, 751, 1. (c) Irngartinger, H. Isr.
J. Chem. 1972, 10, 635. (d) Kammermeier, S.; Jones, P. G.; Herges, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 2200.
4. (a) Gross, J.; Harder, G.; Siepen, A.; Harren, J.; Vögtle, F.; Stephan, H.; Gloe, K.; Ahlers, B.; Cammann, K.; Rissanen,
K. Chem. Eur. J. 1996, 2, 1585. (b) Benkhoff, J.; Boese, R.; Klärner, F.-G. Liebigs Ann./Recueil 1997, 501. (c) Müller, C.;
Whiteford, J. A.; Stang, P. J. J. Am. Chem. Soc. 1998, 120, 9827.
5. For examples, see: (a) Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial
College Press: London, 1998. (b) Ishiguro, T.; Yamaji, K.; Saito, G. Organic Superconductors, 2nd ed.; Springer-Verlag:
Heidelberg, 1998.
6. Iyoda, M.; Kuwatani, Y.; Yamauchi, T.; Oda, M. J. Chem. Soc., Chem. Commun. 1988, 65; also see: Mohler, D. L.; Vollhardt,
K. P. C.; Wolff, S. Angew. Chem., Int. Ed. Engl. 1990, 29, 1151.
7. (a) Block, E. Org. Reactions 1984, 30, 457. (b) Corey, E. J.; Winter, R. A. E. J. Am. Chem. Soc. 1963, 85, 2677. (c) Corey,
E. J.; Shulman, J. I. Tetrahedron Lett. 1968, 3655.
8. Kuwatani, Y.; Kusaka, A.; Iyoda, M.; Yamamoto, G. Tetrahedron Lett. 1999, 40, 2961.
9. Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 1979.
10. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4156; J. Am. Chem. Soc. 1991, 113, 7277.
11. Freudenberger, J. H.; Konradi, A. W.; Pedersen, S. F. J. Am. Chem. Soc. 1989, 111, 8014.
12. All compounds gave satisfactory analytical and spectral data. For example, 2: colorless plates, mp 251.0–254.0°C, MS
1
1
m/z 408 (M+); H NMR (C2D2Cl4, 120°C) δ 6.71 (s, 8H), 6.82 (AA0, 8H), 6.95 (BB0, 8H); H NMR (CDCl3, −55°C) δ
6.44–6.49 (AA0, 4H), 6.51–6.53 (BB0, 4H), 6.45 (s, 4H), 6.76 (s, 4H), 7.28–7.30 (AA0, 4H), 7.36–7.38 (BB0, 4H); 13C NMR
(CDCl3, 60°C) δ 126.5, 128.9, 130.5, 136.5; 13C NMR (CDCl3, −55°C) δ 126.3, 126.4, 127.5, 129.2, 129.7, 130.6, 134.8,
137.1; UV (cyclohexane): λmax (log ε) 227sh (4.31), 274 (4.31) nm. Compound 3: colorless prisms, mp 222.5–223.5°C, MS
m/z 510 (M+); 1H NMR (CDCl3, 25°C) δ 6.47 (s, 10H), 6.93–6.97 (AA0, 10H), 7.01–7.04 (BB0, 10H); 13C NMR (CDCl3)
δ 126.5, 129.1, 129.7, 136.3; UV (cyclohexane): λmax (log ε) 258 (4.63) nm.
13. Crystal data for 2: C32H24, Mw=408.54, orthorhombic, space group Pna21 (# 33), a=21.915(5), b=11.983(4), c=8.732(3) Å,
V=2293(2) Å3, Z=4, Dc=1.183 g cm−3, R=0.043, Rw=0.040, GOF=1.32 for 956 reflections with I>1.50σ(I).