COMMUNICATIONS
excellent agreement to those of a natural sample (1H and
13C NMR, IR, TLC, [a]2D0 13.0 (c 1.09, MeOH).
In conclusion, this total synthesis of ()-discodermolide
proceeds in 27 steps and 7.7% overall yield for the longest
linear sequence starting from commercial methyl (S)-3-
hydroxy-2-methylpropionate. The three key subunits were
synthesized efficiently using boron-mediated anti-selective
aldol reactions of chiral ketones (S)-6, (S)-11, and (S)-17. This
synthesis has the potential to provide useful quantities of ()-
discodermolide, which will allow detailed biological evalua-
tion, as well as offering a variety of options for analogue
chemistry.
[17] I. Paterson, G. J. Florence, unpublished results.
[18] a) I. Paterson, J. M. Goodman, M. A. Lister, R. C. Schumann, C. K.
McClure, R. D. Norcross, Tetrahedron 1990, 46, 4663; b) I. Paterson,
R. M. Oballa, R. D. Norcross, Tetrahedron Lett. 1996, 37, 8581.
[19] For a review of asymmetric aldol reactions using boron enolates, see
C. J. Cowden, I. Paterson, Org. React. 1997, 51, 1.
[20] a) D. A. Evans, K. T. Chapman, E. M. Carreira, J. Am. Chem. Soc.
1988, 110, 3560; b) A. K. Saksena, P. Mangiaracina, Tetrahedron Lett.
1983, 24, 273.
Received: September 13, 1999 [Z14006]
Cofactor-Bound Cross-Linked Enzyme Crystals
(CLEC) of Alcohol Dehydrogenase**
[1] S. P. Gunasekera, M. Gunasekera, R. E. Longley, G. K. Schulte, J. Org.
Chem. 1990, 55, 4912 (Corrigendum: J. Org. Chem. 1991, 56, 1346).
[2] a) E. ter Haar, R. J. Kowalski, E. Hamel, C. M. Lin, R. E. Longley,
S. P. Gunasekera, H. S. Rosenkranz, B. W. Day, Biochemistry 1996, 35,
243; b) S. L. Schreiber, J. Chen, D. T. Hung, Chem. Biol. 1996, 3, 287.
[3] a) R. J. Kowalski, P. Giannakakou, S. P. Gunasekera, R. E. Longley,
B. W. Day, E. Hamel, Mol. Pharmacol. 1997, 52, 613; b) R. Balachan-
dran, E. ter Haar, M. J. Welsh, S. G. Grant, B. W. Day, Anti-Cancer
Drugs 1998, 9, 67.
[4] a) J. B. Nerenberg, D. T. Hung, P. K. Somers, S. L. Schreiber, J. Am.
Chem. Soc. 1993, 115, 12621; b) D. T. Hung, J. B. Nerenberg, S. L.
Schreiber, J. Am. Chem. Soc. 1996, 118, 11054; c) A. B. Smith, III, Y.
Qui, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc. 1995, 117, 12011;
d) S. S. Harried, G. Yang, M. A. Strawn, D. C. Myles, J. Org. Chem.
1997, 62, 6098; e) J. A. Marshall, B. A. Johns, J. Org. Chem. 1998, 63,
7885.
[5] a) D. L. Clark, C. H. Heathcock, J. Org. Chem. 1993, 58, 5878; b) I.
Paterson, S. P. Wren, J. Chem. Soc. Chem. Commun. 1993, 1790;
c) J. M. C. Golec, S. D. Jones, Tetrahedron Lett. 1993, 34, 8159; d) P. L.
Evans, J. M. C. Golec, R. J. Gillespie, Tetrahedron Lett. 1993, 34, 8163;
e) J. M. C. Golec, R. J. Gillespie, Tetrahedron Lett. 1993, 34, 8167; f) I.
Paterson, A. Schlapbach, Synlett 1995, 498; g) M. Miyazawa, S.
Oonuma, K. Maruyama, M. Miyashita, Chem. Lett. 1997, 1191; h) M.
Miyazawa, S. Oonuma, K. Maruyama, M. Miyashita, Chem. Lett. 1997,
1193; i) J. A. Marshall, Z.-H. Lu, B. A. Johns, J. Org. Chem. 1998, 63,
817; j) D. A. Evans, D. P. Halstead, B. D. Allison, Tetrahedron Lett.
1999, 40, 4461; k) S. A. Filla, J. J. Song, L. Chen, S. Masamune,
Tetrahedron Lett. 1999, 40, 5449; l) A. M. Misske, H. M. R. Hoffmann,
Tetrahedron 1999, 55, 4315.
[6] a) I. Paterson, M. V. Perkins, Tetrahedron Lett. 1992, 33, 801; b) I.
Paterson, J. M. Goodman, M. Isaka, Tetrahedron Lett. 1989, 30, 7121;
c) I. Paterson, R. D. Norcross, R. A. Ward, P. Romea, M. A. Lister, J.
Am. Chem. Soc. 1994, 116, 11287.
[7] J. R. Harrison, A. B. Holmes, I. Collins, Synlett 1999, 972.
[8] I. Paterson, E. A. Arnott, Tetrahedron Lett. 1998, 39, 7185.
[9] D. A. Evans, A. Hoveyda, J. Am. Chem. Soc. 1990, 112, 6447.
[10] a) M. Petrzilka, Helv. Chim. Acta 1978, 61, 3075; b) J. W. Burton, J. S.
Clark, S. Derrer, T. C. Stork, J. G. Bendall, A. B. Holmes, J. Am.
Chem. Soc. 1997, 119, 7483.
[11] a) B. Neises, W. Steglich, Angew. Chem. 1978, 90, 556; Angew. Chem.
Int. Ed. Engl. 1978, 17, 522; b) G. Höfle, W. Steglich, H. Vorbrüggen,
Angew. Chem. 1978, 90, 602; Angew. Chem. Int. Ed. Engl. 1978, 17,
569.
[12] I. Paterson, D. J. Wallace, C. J. Cowden, Synthesis 1998, 639.
[13] It was crucial to lower the temperature to 1008C in order to suppress
partial decomposition of the lithium enolate. a) S. H. Montgomery,
M. C. Pirrung, C. H. Heathcock, Org. Synth. Coll. Vol. 1990, 7, 190;
b) M. C. Pirrung, C. H. Heathcock, J. Org. Chem. 1980, 45, 1727; c) I.
Paterson, Tetrahedron Lett. 1983, 24, 1311.
Nancy St. Clair, Yi-Fong Wang, and
Alexey L. Margolin*
The use of dehydrogenases in organic synthesis is often
limited by the intrinsic instability of enzymes and their
nicotinamide cofactors.[1] The protein part of the molecule can
be efficiently stabilized by several techniques such as directed
evolution,[2] immobilization,[3] and protein crystallization and
cross-linking.[4] The latter approach has turned out to be
especially efficient in producing robust and productive
biocatalysts for chemical synthesis.[5] Here, we expand this
approach to the stabilization of the cofactor part of the
dehydrogenase molecule. Horse liver alcohol dehydrogenase
(HLADH) was crystallized in the presence of reduced
nicotinamide adenine dinucleotide (NADH), and the result-
ing crystals were treated with glutaraldehyde to yield the
cross-linked enzyme crystals (CLECs). The crystallized and
cross-linked HLADH was first introduced by Lee et al., and it
demonstrated good activity (26% of that in solution) and an
increased stability of the cross-linked crystals in the presence
of zinc salts.[6] In this work, we use this system to address two
main questions: 1) Is a cofactor more stable when bound
inside the enzyme crystal? 2) Is it possible to regenerate a
cofactor using a coupled substrate system, thus making
HLADH-NADH-CLEC a useful catalyst for organic syn-
thesis?
The activity of soluble enzyme and various HLADH-CLEC
preparations was compared in the reduction of 6-methyl-5-
hepten-2-one (1) in the presence of isopropanol for cofactor
regeneration (Scheme 1). The results, presented in Table 1,
afford several conclusions. The HLADH-NADH-CLECs
exhibit higher activity when HLADH is cocrystallized with
a cofactor and an inhibitor, DMSO. In this case, the resulting
complex exhibited 64% of the activity of the soluble enzyme
in the absence of an exogenous cofactor. DMSO seems to be
[*] Dr. A. L. Margolin, N. St. Clair, Dr. Y.-F. Wang
Altus Biologics Inc.
625 Putnam Ave., Cambridge, MA 02139-4807 (USA)
Fax: (1)617-577-6502
[14] A. De Mico, R. Margarita, L. Parlanti, A. Vescovi, G. Piancatelli, J.
Org. Chem. 1997, 62, 6974.
[15] W. C. Still, C. Gennari, Tetrahedron Lett. 1983, 24, 4405.
[16] P. Kocovsky, Tetrahedron Lett. 1986, 27, 5521.
[**] This work was funded by the NIH (grant 5R44GM51781).
380
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
0570-0833/00/3902-0380 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2000, 39, No. 2