Page 5 of 7
ACS Catalysis
Yu, Z. Substitution of alcohols by N-nucleophiles via transition metal-
chemoselectivity is controlled by the solvent; CH3NO2 gives N-
alkylation products, while HFIP, which is protic, is essential for
C-alkylation. The reaction features a wide substrate scope and
provides convenient access to advanced arylamines.
Mechanistic studies and DFT calculations suggest that the
reaction might proceed through a four-step mechanism, and the
feasibility of N-alkylation and ortho C-alkylation is well
demonstrated.
catalyzed dehydrogenation. Chem. Soc. Rev. 2015, 44, 2305-2329.
[4] (a) Dryzhakov, M.; Richmond, E.; Moran, J. Recent Advances in
Direct Catalytic Dehydrative Substitution of Alcohols. Synthesis 2016,
48, 935-959; b) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M.
Bismuth-Catalyzed Direct Substitution of the Hydroxy Group in
Alcohols with Sulfonamides, Carbamates, and Carboxamides. Angew.
Chem. Int. Ed. 2007, 46, 409-413; (c) Terrasson, V.; Marque, S.;
Georgy, M.; Campagne, J.-M.; Prim, D. Lewis Acid-Catalyzed Direct
Amination of Benzhydryl Alcohols. Adv. Synth. Catal. 2006, 348,
2063-2067; (d) Zhu, A.; Li, L.; Wang, J.; Zhuo, K. Direct nucleophilic
substitution reaction of alcohols mediated by a zinc-based ionic liquid.
Green Chem. 2011. 13, 1244-1250; (e) Ohshima, T.; Ipposhi, J.;
Nakahara, Y.; Shibuya, R.; Mashima, K. Aluminum Triflate as a
Powerful Catalyst for Direct Amination of Alcohols, Including
Electron-Withdrawing Group-Substituted Benzhydrols. Adv. Synth.
Catal. 2012, 354, 2447-2452; (f) Nayal, O. S.; Thakur, M. S.; Kumar,
M.; Kumar, N.; Maurya, S. K. Ligand-free Iron(II)-Catalyzed N-
Alkylation of Hindered Secondary Arylamines with Non-activated
Secondary and Primary Alcohols via a Carbocationic Pathway. Adv.
Synth. Catal. 2018, 360, 730 –737.
1
2
3
4
5
6
7
8
ASSOCIATED CONTENT
The Supporting Information is available free of charge on the ACS
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Publications
website.
Experimental details, GCMS, and NMR spectra of
products (PDF)
Crystallographic data for Complex I (CIF)
AUTHOR INFORMATION
Corresponding Author
[5] (a) Zhao, Y.; Foo, S. W.; Saito, S. Iron/Amino Acid Catalyzed
Direct N-Alkylation of Amines with Alcohols. Angew. Chem. Int. Ed.
2011, 50, 3006-3009; (b) Du, Y.; Oishi, S.; Saito, S. Selective N-
Alkylation of Amines with Alcohols by Using Non-Metal-Based Acid-
Base Cooperative Catalysis. Chem. Eur. J. 2011, 17, 12262-12267.
[6] Sweeney, J. B.; Ball, A. K.; Lawrence, P. A.; Sinclair, M. C.; Smith,
L. J. A Simple, Broad-Scope Nickel(0) Precatalyst System for the
Direct Amination of Allyl Alcohols. Angew. Chem. Int. Ed. 2018, 57,
10202-10206.
[7] (a) Alajarin, M.; Bonillo, B.; Ortin, M.-M.; Sanchez-Andrada, P.;
Vidal, A.; Orenes, R.-A. Domino reactions initiated by intramolecular
hydride transfers from tri(di)arylmethane fragments to ketenimine and
carbodiimide functions. Org. Biomol. Chem. 2010, 8, 4690–4700; (b)
Guo, L.; Kong, W.; Xu, Y.; Yang, Y.; Ma, R.; Cong, L.; Dai, S.; Liu,
Z. Large-scale synthesis of novel sterically hindered acenaphthene-
based α-diimine ligands and their application in coordination
chemistry. J. Organometal. Chem. 2018, 859, 58-67; (c) Cheng, B.;
Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. Highly Enantioselective Cobalt-
Catalyzed Hydrosilylation of Alkenes. J. Am. Chem. Soc. 2017, 139,
9439-9442; (d) Cherian, A. E.; Domski, G. J.; Rose, J. M.; Lobkovsky,
E. B.; Coates, G. W. Acid-Catalyzed ortho-Alkylation of Anilines with
Styrenes:ꢀ An Improved Route to Chiral Anilines with Bulky
Substituents. Org. Lett. 2005, 7, 5135-5137.
[8] (a) Stephan, D. W. J. Am. Chem. Soc. 2015, 137, 10018-10032; (b)
Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2015, 54, 6400 –
6441; (c) Oestreich, M.; Hermeke, J.; Mohr, J. Chem. Soc. Rev. 2015,
44, 2202-2220.
[9] (a) Fu, M.-C.; Shang, R.; Cheng, W.-M.; Fu, Y. Boron-Catalyzed
N-Alkylation of Amines using Carboxylic Acids. Angew. Chem. Int.
Ed. 2015, 54, 9042-9046; (b) Zhang, Q.; Fu, M.-C.; Yu, H.-Z.; Fu, Y.
Mechanism of Boron-Catalyzed N-Alkylation of Amines with
Carboxylic Acids. J. Org. Chem. 2016, 81, 6235-6243; (c) Pan, Y.;
Luo, Z.; Han, J.; Xu, X.; Chen, C.; Zhao, H.; Xu, L.; Fan, Q.; Xiao, J.
B(C6F5)3-Catalyzed Deoxygenative Reduction of Amides to Amines
Corresponding Author
mengshsh@mail.sysu.edu.cn; zhaojling3@mail.sysu.edu.cn;
Author Contributions
The manuscript was written through contributions of all authors. /
All authors have given approval to the final version of the
manuscript. / ‡ S.-S. Meng and X. Tang contributed equally.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We are grateful to the Research Foundation for Natural Science
Foundation of Guangdong Province (2018A0303130178) and
Advanced Talents of Sun Yat-sen University (36000-18821101)
for financial support of this program. We thank Prof. Yong Liang
for the kind suggestion of reaction mechanism.
REFERENCES
[1] (a) Amines: Synthesis Properties and Applications (Ed.: Lawrence,
S. A.), Cambridge University Press, Cambridge, 2004; (b) Amino
Group Chemistry, From Synthesis to the Life Sciences (Ed.: Ricci, A.),
Wiley-VCH, Weinheim, 2007; (c) The Organic Chemistry of Aliphatic
Nitrogen Compounds (Ed.: Brown, B. R.) Cambridge University:
Cambridge, 2004; d) Catalytic Amination for N-Alkyl Amine Synthesis
(Ed.: Shi, F.; Cui X.), Elsevier, 2018.
[2] (a) Surry, D. S.; Buchwald, S. L. Biaryl Phosphane Ligands in
Palladium-Catalyzed Amination. Angew. Chem. Int. Ed. 2008, 47,
6338-6361; (b) Hartwig, J. F. Evolution of a Fourth Generation
Catalyst for the Amination and Thioetherification of Aryl Halides. Acc.
Chem. Res. 2008, 41, 1534-1544; (c) Bissemner, A. C.; Lundgren, R.
J.; Creutz, S. E.; Peters, J. C.; Fu, G. C. Transition-Metal-Catalyzed
Alkylations of Amines with Alkyl Halides: Photoinduced, Copper-
Catalyzed Couplings of Carbazoles. Angew. Chem. Int. Ed. 2013, 52,
5129-5133; (d) Peacock, D. M.; Roos, C. B.; Hartwig, J. F. Palladium-
Catalyzed Cross Coupling of Secondary and Tertiary Alkyl Bromides
with a Nitrogen Nucleophile. ACS Cent. Sci. 2016, 2, 647-652.
[3] (a) Guillena, G.; Ramón, D. J.; Yus, M. Hydrogen Autotransfer in
the N-Alkylation of Amines and Related Compounds using Alcohols
and Amines as Electrophiles. Chem. Rev. 2010, 110, 1611-1641; (b)
Irrgang, T.; Kempe, R. 3d-Metal Catalyzed N- and C-Alkylation
Reactions via Borrowing Hydrogen or Hydrogen Autotransfer. Chem.
Rev. 2019, 119, 2524-2549; (c) Bähn, S.; Imm, S.; Neubert, L.; Zhang,
M.; Neumann, H.; Beller, M. The Catalytic Amination of Alcohols.
ChemCatChem 2011, 3, 1853-1864; (d) Corma, A.; Navas, J.; Sabater,
M. J. Advances in One-Pot Synthesis through Borrowing Hydrogen
Catalysis. Chem. Rev. 2018, 118, 1410-1459; (e) Yang, Q.; Wang, Q.;
with
Ammonia
Borane.
Adv.
Synth.
Catal.
DOI:
10.1002/adsc.201801447.
[10] (a) Fasano, V.; Radcliffe, J. E.; Ingleson, M. J. B(C6F5)3‑Catalyzed
Reductive Amination using Hydrosilanes. ACS Catal. 2016, 6, 1793-
1798; (b) Fasano, V.; Radcliffe, J. E.; Ingleson, M. J. Mechanistic
Insights into the B(C6F5)3-Initiated Aldehyde-Aniline-Alkyne Reaction
To Form Substituted Quinolines. Organometallics 2017, 36, 1623-
1629; (c) Pan, Z.; Shen, L.; Song, D.; Xie, Z.; Ling, F.; Zhong, W.
B(C6F5)3-Catalyzed Asymmetric Reductive Amination of Ketones with
Ammonia Borane. J. Org. Chem. 2018, 83, 11502-11509.
[11] (a) Dryzhakov, M.; Hellal, M.; Wolf, E.; Falk, F. C.; Moran, J.
Nitro-Assisted Brønsted Acid Catalysis: Application to a Challenging
Catalytic Azidation. J. Am. Chem. Soc. 2015, 137, 9555-9558; (b)
Shibuya, M.; Okamoto, M.; Fujita, S.; Abe, M.; Yamamoto, Y. Boron-
Catalyzed Double Hydrofunctionalization Reactions of Unactivated
Alkynes. ACS Catal. 2018, 8, 4189-4193; (c) Tiddens, M. R.; Gebbink,
ACS Paragon Plus Environment