ChemComm
Communication
10 T. S. De Vries, A. Prokofjevs and E. Vedejs, Chem. Rev., 2012, 112, 4246.
11 (a) S. A. Solomon, A. Del Grosso, E. R. Clark, V. Bagutski,
J. J. W. McDouall and M. J. Ingleson, Organometallics, 2012,
31, 1908; (b) H. B. Mansaray, A. D. L. Rowe, N. Phillips,
J. Niemeyer, M. Kelly, D. A. Addy, J. I. Bates and S. Aldridge, Chem.
Commun., 2011, 47, 12295; (c) A. Prokofjevs and E. Vedejs, J. Am.
Chem. Soc., 2011, 133, 20056; (d) T. Matsumoto and F. P. Gabbai,
Organometallics, 2009, 28, 4252.
Scheme 2 Hydrosilylation of ketones catalyzed by (pR)-3+.
12 A. Prokofjevs, J. W. Kampf and E. Vedejs, Angew. Chem., Int. Ed.,
2011, 50, 2098.
13 (a) J. M. Farrell, J. A. Hatnean and D. W. Stephan, J. Am. Chem. Soc.,
2012, 134, 15728; (b) P. Eisenberger, A. M. Bailey and C. M. Crudden,
J. Am. Chem. Soc., 2012, 134, 17384; (c) E. Clark, A. del Grosso and
M. J. Ingleson, Chem.–Eur. J., 2013, 19, 2462.
product resulted in release from the Lewis acid suggested that a
catalytic process is feasible (Scheme 2). Indeed, with a 5% loading of
the borenium species (pR)-3+ as the catalyst 60% conversion of
acetophenone was achieved over 12 h at RT. Hydrolysis to the
corresponding alcohol and subsequent chiral GC-FID analysis
revealed a 20% ee for the R(+) product in both the stoichiometric
and catalytic process.35
14 (a) D. J. Chen, V. Leich, F. F. Pan and J. Klankermayer, Chem.–Eur. J.,
¨
2012, 18, 5184; (b) M. Mewald, R. Frohlich and M. Oestreich,
Chem.–Eur. J., 2011, 17, 9406.
15 R. Boshra, A. Doshi and F. Jakle, Angew. Chem., Int. Ed., 2008,
¨
In conclusion, halide abstraction from the Lewis acid–base
pair (pR)-2 was accomplished using the Ag or Li derivative of
Krossing’s salt, resulting in a novel planar-chiral borenium-type
Lewis acid. The Lewis acid strength of chiral (pR)-3+ proved to
be comparable to that of B(C6F5)3. While modest enantiomeric
excess was achieved in the hydrosilylation of ketones with
(pR)-3+ as a catalyst, this study represents the first application
of a planar-chiral borenium Lewis acid in the stereoselective
reduction of ketones. Further modification of the steric demand
of the pyridyl ligand and the exocyclic boron substituent is
expected to allow for significantly enhanced selectivities, while
the activity can likely be optimized through tuning of the
electronic effect of the exocyclic B-aryl group.
47, 1134.
16 (a) C. H. Burgos, E. Canales, K. Matos and J. A. Soderquist, J. Am.
Chem. Soc, 2005, 127, 8044; (b) D. J. Morrison, W. E. Piers and
M. Parvez, Synlett, 2004, 2429; (c) M. Reilly and T. Oh, Tetrahedron
Lett., 1995, 36, 221; (d) J. M. Hawkins, S. Loren and M. Nambu, J. Am.
Chem. Soc., 1994, 116, 1657.
¨
17 (a) P. Thilagar, J. Chen, R. A. Lalancette and F. Jakle, Organometallics,
¨
2011, 30, 6734; (b) R. Boshra, A. Doshi, K. Venkatasubbaiah and F. Jakle,
Inorg. Chim. Acta, 2010, 162; (c) R. Boshra, K. Venkatasubbaiah, A. Doshi
¨
and F. Jakle, Organometallics, 2009, 28, 4141.
18 J. Chen, K. Venkatasubbaiah, T. Pakkirisamy, A. Doshi, A. Yusupov,
¨
Y. Patel, R. A. Lalancette and F. Jakle, Chem.–Eur. J., 2010, 16, 8861.
19 Related studies: I. R. Morgan, A. Di Paolo, D. Vidovic, I. A. Fallis and
S. Aldridge, Chem. Commun., 2009, 7288.
20 (a) S.-Y. Liu, I. D. Hills and G. C. Fu, J. Am. Chem. Soc., 2005,
127, 15352; (b) S. Y. Liu, M. M. C. Lo and G. C. Fu, Tetrahedron, 2006,
62, 11343.
We thank the Petroleum Research Fund administered by the
American Chemical Society for financial support. The X-ray
diffractometer was purchased with support from the National
Science Foundation (NSF-CRIF 0116066) and Rutgers University
(Academic Excellence Fund). We thank Fei Cheng for assistance
with HPLC measurements.
21 The IUPAC-recommended Cahn–Ingold–Prelog (CIP) descriptors pS
and pR are used throughout the manuscript to describe the planar
¨
chirality; see: K. Schlogl, Top. Stereochem., 1967, 1, 39.
22 The selective formation of (pR)-2 is surprising, because the isomer
(pS)-2 of opposite planar chirality would be expected in an ipso-
borodestannylation reaction. Mechanistic details of this unusual
rearrangement will be reported elsewhere.
23 A single crystal X-ray structure of (pR)-2 confirmed the stereo-
chemical assignment and revealed the exo-Ph isomer as the only
stereoisomer in the solid state.
Notes and references
24 I. Krossing, Chem.–Eur. J., 2001, 7, 490.
1 Lewis Acids in Organic Synthesis, ed. H. Yamamoto, Wiley VCH,
Weinheim, New York, Chichester, Brisbane, Singapore, Toronto,
2000.
2 E. Y.-X. Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391.
3 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2009, 49, 46–76;
V. Sumerin, F. Schulz, M. Atsumi, C. Wang, M. Nieger, M. Leskelae,
25 For studies of the charge transfer properties of dipyridylboronium-
functionalized ferrocenes see: M. D. Thomson, M. Novosel,
H. G. Roskos, T. Mu¨ller, M. Scheibitz, M. Wagner, F. F. de Biani
and P. Zanello, J. Phys. Chem. A, 2004, 108, 3281.
26 B. E. Carpenter, W. E. Piers, M. Parvez, G. P. A. Yap and S. J. Rettig,
Can. J. Chem., 2001, 79, 857.
¨
T. Repo, P. Pyykko and B. Rieger, J. Am. Chem. Soc., 2008, 130, 14117.
¨
27 A. Appel, F. Jakle, T. Priermeier, R. Schmid and M. Wagner,
4 W. E. Piers, A. J. V. Marwitz and L. G. Mercier, Inorg. Chem., 2011, 50,
12252–12262.
Organometallics, 1996, 15, 1188.
28 To date, the largest dip angle of any borylferrocene derivative was
found for the antiaromatic ferrocenylborole FcBC4Ph4 (29.41; Feꢁ ꢁ ꢁB
2.664 Å); H. Braunschweig, F. Breher, C.-W. Chiu, D. Gamon,
D. Nied and K. Radacki, Angew. Chem., Int. Ed., 2010, 49, 8975.
29 K. Venkatasubbaiah, A. Doshi, I. Nowik, R. H. Herber,
5 (a) C. R. Wade, A. E. J. Broomsgrove, S. Aldridge and F. P. Gabbai,
Chem. Rev., 2010, 110, 3958; (b) Z. M. Hudson and S. Wang, Acc.
Chem. Res., 2009, 42, 1584.
6 (a) A. Lorbach, A. Hubner and M. Wagner, Dalton Trans., 2012,
¨
41, 6048; (b) F. Jakle, Chem. Rev., 2010, 110, 3985; (c) C. D. Entwistle
¨
A. L. Rheingold and F. Jakle, Chem.–Eur. J., 2008, 14, 444.
and T. B. Marder, Angew. Chem., Int. Ed., 2002, 41, 2927.
7 (a) W. E. Piers, Adv. Organomet. Chem., 2005, 52, 1; (b) W. E. Piers
and T. Chivers, Chem. Soc. Rev., 1997, 26, 345.
8 (a) H. Braunschweig and T. Kupfer, Chem. Commun., 2011, 47, 10903;
(b) A. Iida, A. Sekioka and S. Yamaguchi, Chem. Sci., 2012, 3, 1461;
(c) A. Fukazawa, J. L. Dutton, C. Fan, L. G. Mercier, A. Y. Houghton,
Q. Wu, W. E. Piers and M. Parvez, Chem. Sci., 2012, 3, 1814;
(d) T. Pakkirisamy, K. Venkatasubbaiah, W. S. Kassel, A. L. Rheingold
30 For a related discussion on boryl-phosphonium vs. borenium
species, see: M. A. Dureen, A. Lough, T. M. Gilbert and D. W. Stephan,
Chem. Commun., 2008, 4303.
31 D. J. Parks and W. E. Piers, J. Am. Chem. Soc., 1996, 118, 9440.
32 M. Mewald and M. Oestreich, Chem.–Eur. J., 2012, 18, 14079.
33 J. Koller and R. G. Bergman, Organometallics, 2012, 31, 2530.
34 The Lewis acid strength of 3+ toward acetophenone proved to
be about one order of magnitude lower than that of B(C6F5)3. See
Fig. S9 in the ESI†.
¨
and F. Jakle, Organometallics, 2008, 27, 3056; (e) K. Venkatasubbaiah,
¨
L. N. Zakharov, W. S. Kassel, A. L. Rheingold and F. Jakle, Angew. Chem.,
35 Use of PhMe2SiH or the bulkier t-butylmethyl ketone led to higher
conversions (>95% within 10 min), but the enantiomeric excess
proved to be lower. See Table S1 in the ESI†.
Int. Ed., 2005, 44, 5428; ( f ) M. V. Metz, D. J. Schwartz, C. L. Stern,
P. N. Nickias and T. J. Marks, Angew. Chem., Int. Ed., 2000, 39, 1312.
¨
9 P. Kolle and H. Noth, Chem. Rev., 1985, 85, 399.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.