Table 4 Selected bond distances (Å), angles (Њ) and possible hydrogen-
bonding interactions for {[Zn(HL2)]ؒ3H2O}∞ 4
Acknowledgements
We thank Professor Bernhard Lippert for the generous
and continuous support of our work. Financial support by
the Ministerium für Wissenschaft und Forschung, NRW
(Lise-Meitner-Habilitationsstipendium to A. E.) is gratefully
acknowledged.
Zn(1)–N(2)
Zn(1)–O(2)a
Zn(1)–O(5)
O(2)–C(10)
O(4)–C(13)
2.036(3)
1.976(3)
2.219(3)
1.258(5)
1.257(4)
Zn(1)–O(1)
Zn(1)–O(4)b
N(1)–C(8)
O(3)–C(10)
O(5)–C(13)
2.040(3)
1.960(3)
1.284(5)
1.240(5)
1.239(4)
N(2)–Zn(1)–O(2)a
O(1)–Zn(1)–N(2)
O(1)–Zn(1)–O(5)
O(5)–Zn(1)–N(2)
C(11)–N(2)–C(12)
C(1)–O(1)–Zn(1)
133.2(1)
88.5(1)
161.1(1)
77.7(1)
N(2)–Zn(1)–O(4)b
O(1)–Zn(1)–O(4)b
O(2)a–Zn(1)–O(4)b
C(8)–N(1)–C(9)
C(11)–N(2)–Zn(1)
C(10)–O(2)–Zn(1)a
C(13)–O(5)–Zn(1)
O(4)–C(13)–O(5)
122.3(1)
106.4(1)
102.6(1)
123.0(4)
126.7(3)
122.8(3)
114.3(2)
127.2(4)
References
1 D. E. Wilcox, Chem. Rev., 1996, 96, 2435 and refs. therein;
N. Sträter, W. N. Lipscomb, T. Klabunde and B. Krebs, Angew.
Chem., Int. Ed. Engl., 1996, 35, 2024 and refs. therein.
117.7(3)
130.2(2)
2 J. Chin, Acc. Chem. Res., 1991, 24, 145 and refs. therein; P. Hendry
and A. M. Sargeson, Prog. Inorg. Chem., 1990, 38, 201 and refs.
therein; for zinc complexes see e.g. T. Koike and E. Kimura, J. Am.
Chem. Soc., 1991, 113, 8935; T. Koike, S. Kajitani, I. Nakamura,
E. Kimura and M. Shiro, J. Am. Chem. Soc., 1995, 117, 1210;
E. Kimura, Y. Kodama and T. Koike, J. Am. Chem. Soc., 1995, 117,
8304; A. Looney, G. Parkin, R. Alsfasser, M. Ruf and H.
Vahrenkamp, Angew. Chem., Int. Ed. Engl., 1992, 31, 92; R.
Alsfasser, M. Ruf, S. Trofimenko and H. Vahrenkamp, Chem. Ber.,
1993, 126, 703; M. Ruf, K. Weis and H. Vahrenkamp, J. Chem. Soc.,
Chem. Commun., 1994, 135; S. Hikichi, M. Tanaka, Y. Moro-oka
and N. Kitajima, J. Chem. Soc., Chem. Commun., 1992, 814;
H. Adams, N. A. Bailey, D. E. Fenton and Q.-Y. He, J. Chem. Soc.,
Dalton Trans., 1996, 2857; S. H. Gellman, R. Petter and R. Breslow,
J. Am. Chem. Soc., 1986, 108, 2388; P. R. Norman, A. Tate and
P. Rich, Inorg. Chim. Acta, 1988, 145, 211; R. G. Clewley,
H. Slebocka-Tilk and R. S. Brown, Inorg. Chim. Acta, 1989, 157,
233; R. Chaudhuri, C. Stockheim, K. Wieghardt, W. Deck, R.
Gregorzik, H. Vahrenkamp, B. Nuber and J. Weiss, Inorg. Chem.,
1992, 31, 1451.
C(13)–O(4)–Zn(1)c 143.5(3)
O(2)–C(10)–O(3)
126.5(4)
N(1) ؒ ؒ ؒ O(1)
2.647(4)
2.91(2)
2.62(3)
2.740(7)
2.68(3)
3.02 (2)
2.61(2)
2.91(2)
2.58(3)
2.81(2)
2.88(3)
O(3) ؒ ؒ ؒ O(3W)a
O(3) ؒ ؒ ؒ O(7W)a
O(5) ؒ ؒ ؒ O(1W)c
O(1W) ؒ ؒ ؒ O(6W)b
O(2W) ؒ ؒ ؒ O(3W)e
O(2W) ؒ ؒ ؒ O(7W)e
O(2W) ؒ ؒ ؒ O(8W)e
O(4W) ؒ ؒ ؒ O(7W)
O(4W) ؒ ؒ ؒ O(8W)
O(6W) ؒ ؒ ؒ O(7W)e
2.69(3)
2.73(3)
2.869(6)
2.61(2)
2.68(3)
2.61(2)
2.91(2)
2.58(3)
2.81(2)
2.77(3)
O(3) ؒ ؒ ؒ O(5W)a
O(3) ؒ ؒ ؒ O(8W)a
O(1W) ؒ ؒ ؒ O(2W)d
O(2W) ؒ ؒ ؒ O(3W)
O(2W) ؒ ؒ ؒ O(5W)
O(2W) ؒ ؒ ؒ O(7W)
O(2W) ؒ ؒ ؒ O(8W)
O(4W) ؒ ؒ ؒ O(7W)e
O(4W) ؒ ؒ ؒ O(8W)e
O(6W) ؒ ؒ ؒ O(8W)e
Symmetry operations: a Ϫx ϩ 1, Ϫy, Ϫz ϩ 1; b Ϫx ϩ ¹, y Ϫ ¹, Ϫz ϩ ¹;
¯
²
¯
²
¯
²
c Ϫx ϩ ¹, y ϩ ¹, Ϫz ϩ ¹; d x Ϫ ¹, y ϩ ¹, z; e Ϫx ϩ 1, y, Ϫz ϩ ¹.
¯
²
¯
²
¯
²
¯
²
¯
²
¯
²
3 T. Koike, M. Inoue, E. Kimura and M. Shiro, J. Am. Chem. Soc.,
1996, 118, 3091; N. H. Williams, W. Cheung and J. Chin, J. Am.
Chem. Soc., 1998, 120, 8079; P. Molenveld, J. F. J. Engbersen,
H. Kooijman, A. L. Spek and D. N. Reinhoudt, J. Am. Chem. Soc.,
1998, 120, 6726; C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi,
C. Giorgi, P. Paoletti, B. Valtancoli and D. Zanchi, Inorg. Chem.,
1997, 36, 2784; M. Yashiro, A. Ishikubo and M. Komiyama,
J. Chem. Soc., Chem. Commun., 1995, 1793; D. Wahnon, A.-M.
Lebuis and J. Chin, Angew. Chem., Int. Ed. Engl., 1995, 34, 2412;
Y. Chung, E. U. Akkaya, T. K. Venkatachalam and A. W. Czarnik,
Tetrahedron Lett., 1990, 31, 5413; D. H. Vance and A. W. Czarnik,
J. Am. Chem. Soc., 1993, 115, 12165; M. Wall, R. C. Hynes and
J. Chin, Angew. Chem., Int. Ed. Engl., 1993, 32, 1633; B. K. Takasaki
and J. Chin, J. Am. Chem. Soc., 1993, 115, 9337; B. K. Takasaki and
J. Chin, J. Am. Chem. Soc, 1994, 116, 1121; B. K. Takasaki and
J. Chin, J. Am. Chem. Soc., 1995, 117, 8582; D. R. Jones, L. F.
Lindoy, A. M. Sargeson and M. R. Snow, Inorg. Chem., 1982, 21,
4155; M. W. Göbel, Angew. Chem., Int. Ed. Engl., 1994, 33, 1141 and
refs. therein; W. H. Chapman, Jr. and R. Breslow, J. Am. Chem. Soc.,
1995, 117, 5462; M. J. Young and J. Chin, J. Am. Chem. Soc., 1995,
117, 10577; K. G. Ragunathan and H.-J. Schneider, Angew. Chem.,
Int. Ed. Engl., 1996, 35, 1219; S. Liu, Z. Luo and A. D. Hamilton,
Angew. Chem., Int. Ed. Engl., 1997, 36, 2678; R. Hettich and H.-J.
Schneider, J. Am. Chem. Soc., 1997, 119, 5638; Y. Gultneh, Allwar,
B. Ahvazi, D. Blaise, R. J. Butcher, J. Jasinski and J. Jasinski, Inorg.
Chim. Acta, 1996, 241, 31.
4 N. N. Murthy, M. Mahroof-Tahir and K. D. Karlin, J. Am. Chem.
Soc., 1993, 115, 10404; H. Sakiyama, R. Mochizuki, A. Sugawara,
M. Sakamoto, Y. Nishida and M. Yamasaki, J. Chem. Soc., Dalton
Trans., 1999, 997; for hydrolytic cleavage of activated carboxy esters
see C. Wendelstorf, S. Warzeska, E. Kövári and R. Krämer,
J. Chem. Soc., Dalton Trans., 1996, 3087; C. Bazzicalupi, A. Bencini,
E. Berni, A. Bianchi, V. Fedi, V. Fusi, C. Giorgi, P. Paoletti and
B. Valtancoli, Inorg. Chem., 1999, 38, 4155.
5 S. K. Burley, P. R. David, A. Taylor and W. N. Lipscomb, Proc.
Natl. Acad. Sci. U.S.A., 1990, 87, 6878; S. K. Burley, P. R. David,
R. M. Sweet, A. Taylor and W. N. Lipscomb, J. Mol. Biol., 1992,
224, 113; N. Sträter and W. N. Lipscomb, Biochemistry, 1995, 34,
14792.
[O(1)] and carboxylate [O(2)] oxygens occupying the apical
positions. Owing to the narrow bite of the chelating side arm
the N(2)–Zn(1)–O(5) bond angle is reduced from the ideal 90Њ
angle to 77.7(1)Њ. The lengthening of the Zn(1)–O(5) bond to
2.219(3) Å [compared with 1.960(3) Å for Zn(1)–O(4) and
1.976(3) Å for Zn(1)–O(2)] may also be caused by steric effects
of the chelate ligand.
In the three-dimensional structure the dimeric subunits are
connected in such a way that long channels are produced
along the crystallographic y axis that are stabilised by water
of crystallisation. The disordered water molecules form
hydrogen bonds among each other and to the carboxylate O(3)
and O(5) oxygens (Table 4). The phenolic rings are stacked
along the y axis so that neighbouring rings overlap partly.
Spectroscopic characterisation of complexes 2 and 4. As
1
described above, the H NMR spectrum of complex 2 shows
two singlets in the aromatic region: in CD3OD the azo-
methine and phenolic ring protons are detected at δ 8.45
and 7.35. The singlets at δ 4.16 and 2.28 correspond to the
methylene and methyl protons. In the IR spectrum, the ν(C᎐N)
᎐
vibration of 2 appears at 1645 cmϪ1. The difference of 130
cmϪ1 between νasym(COO) [1578 cmϪ1] and νsym(COO) [1448
cmϪ1] is consistent with the bridging co-ordination mode of
the acetate groups. The IR spectrum of 4 shows two ν(C᎐N)
᎐
vibration modes at 1653 and 1631 cmϪ1. In the 1H NMR
spectrum (D2O, pD 6.9) the non-equivalent azomethine and
aromatic ring protons of the mono-co-ordinated compound
are detected at δ 8.40, 8.33 (azomethine), 7.59 and 7.44 (aro-
matic ring).
Conclusion
6 B. Chevrier, C. Schalk, H. D’Orchymont, J. Rondeau, D. Moras
and C. Tarnus, Structure, 1994, 2, 283.
This work described the hydrolysis of glycine ethyl ester
promoted by a dinuclear zinc() Schiff base complex under
mild conditions. Reaction of the Schiff base complex with the
hydrolysis product glycine results in conversion of the ligand.
The crystal structures of the pentanuclear complex [{Zn2L2-
(CH3CO2)2}2Zn(H2O)4]ؒ4.5H2O and of the polymeric complex
{[Zn(HL2)]ؒ3H2O}∞ have been determined.
7 N. Sträter and W. N. Lipscomb, Biochemistry, 1995, 34, 9200.
8 M. Suzuki, M. Mikuriya, S. Murata, A. Uehara, H. Oshio, S. Kida
and K. Saito, Bull. Chem. Soc. Jpn., 1987, 60, 4305; M. Ghiladi,
C. J. McKenzie, A. Meier, A. K. Powell, J. Ulstrup and S. Wocadlo,
J. Chem. Soc., Dalton Trans., 1997, 4011; H. Diril, H. R. Chang, M.
J. Nilges, X. Zhang, J. A. Potenza, H. J. Schugar, S. S. Isied and D.
N. Hendrickson, J. Am. Chem. Soc., 1989, 111, 5102.
574
J. Chem. Soc., Dalton Trans., 2000, 569–575