Y. Nishigaichi et al. / Journal of Organometallic Chemistry 694 (2009) 3837–3839
(f) A. Takuwa, J. Shiigi, Y. Nishigaichi, Tetrahedron Lett. 34 (1993) 3457;
3839
(10 mL) was degassed by bubbling nitrogen in a Pyrex test tube,
which was irradiated for 5 h with a high pressure mercury lamp
(300 W) through an appropriate filter solution under a nitrogen
atmosphere at room temperature. After concentrating the reaction
mixture under reduced pressure, the residue was chromatographed
on a silica gel TLC plate to isolate the corresponding products.
(g) A. Takuwa, Y. Nishigaichi, S. Ebara, H. Iwamoto, Chem. Commun. (1998)
1789;
(h) A. Takuwa, H. Saito, Y. Nishigaichi, Chem. Commun. (1999) 1963. See also
references cited therein.
[6] (a) Y. Nishigaichi, A. Suzuki, T. Saito, A. Takuwa, Tetrahedron Lett. 46 (2005)
5149;
(b) Y. Nishigaichi, A. Suzuki, A. Takuwa, Tetrahedron Lett. 48 (2007)
211.
[7] As a pioneering work, Lan and Schuster reported photo-induced substitution of
aromatic cyanides using benzyltriphenylborate J.Y. Lan, G.B. Schuster, J. Am.
Chem. Soc. 107 (1985) 6710.
[8] (a) Reduction potentials of the carbonyl compounds were measured as a DPV
peak value in acetonitrile with reference of Fc+/Fc. Redox potential of Fc+/Fc
was reportedly 0.40 V vs. SCE in acetonitrile [8b];
(b) H.-J. Krüger, R.H. Holm, J. Am. Chem. Soc. 112 (1990) 2955.
[9] (a) S. Hu, D.C. Neckers, J. Org. Chem. 62 (1997) 6820;
(b) Y. Ogata, K. Takagi, Bull. Chem. Soc. Jpn. 47 (1974) 2255;
(c) S.L. Murov, Handbook of Photochemistry, Marcel Dekker Inc., New York,
1973;
(d) A. Kuboyama, S. Yabe, Bull. Chem. Soc. Jpn. 40 (1967) 2475.
[10] A. Takuwa, Y. Nishigaichi, K. Yamashita, H. Iwamoto, Chem. Lett. (1990) 639.
[11] A. Pelter, K. Smith, H.C. Brown, Borane Reagents, Academic Press, London,
1988;
References
[1] H.A. Stefani, R. Cella, A.S. Vieira, Tetrahedron 63 (2007) 3623;
S. Darses, J.-P. Genet, Eur. J. Org. Chem. (2003) 4313.
[2] G.A. Molander, R. Figueroa, Aldrichim. Acta 38 (2005) 49.
[3] H. Doucet, Eur. J. Org. Chem. (2008) 2013.
[4] (a) P.S. Mariano (Ed.), Advances in Electron Transfer Chemistry, vols. 1–6, JAI
Press, Stamford, 1991–1999;
(b) G.J. Kavarnos, Fundamental of Photoinduced Electron Transfer, Wiley-VCH,
Weinheim, 1993;
(c) W.M. Horspool, F. Lenci (Eds.), CRC Handbook of Organic Photochemistry
and Photobiology, 2nd ed., CRC Press, Boca Raton, 2004;
(d) P. Klán, J. Wirz, Photochemistry of Organic Compounds: From Concepts to
Practice, Wiley, Chichester, 2009.
[5] (a) Y. Nishigaichi, A. Takuwa, Photochemistry 34 (2003) 183;
(b) A. Takuwa, H. Tagawa, H. Iwamoto, O. Soga, K. Maruyama, Chem. Lett.
(1987) 1091;
R.A. Batey, A.N. Thadani, D.V. Smil, Tetrahedron Lett. 40 (1999) 4289.
[12]
D
G = 23.06(Eox À Ered) À
D ) D. Rehm, A. Weller, Isr. J.
ET + Ecoul (kcal molÀ1
Chem. 8 (1970) 259. Value of Ecoul in acetonitrile is À1.3 kcal molÀ1 [4b].
(c) A. Takuwa, Y. Nishigaichi, K. Yamashita, H. Iwamoto, Chem. Lett. (1990)
1761;
(d) A. Takuwa, Y. Nishigaichi, H. Iwamoto, Chem. Lett. (1991) 1013;
(e) A. Takuwa, Y. Nishigaichi, T. Yamaoka, K. Iihama, J. Chem. Soc., Chem.
Commun. (1991) 1359;
[13] Oxidation potentials Eox (V vs. SCE) of the borates were determine as in Ref.
[8a]. 1: +1.10, 2: +0.93, 8: +0.76, 9: +0.62.
[14] M.V. Encinas, E.A. Lissi, A. Zanocco, L.C. Stewart, J.C. Scaiano, Can. J. Chem. 62
(1984) 386.