1018
coupling limit J»a (with J=exchange coupling constant and a=hyperfine coupling constant). However, for
3, the presence of both weak and strong exchange processes was observed. The evolution of the magnetic
susceptibility χ has been determined on the 4–120 K temperature range by ESR studies on dilute frozen
solutions containing the triradicals 1 and 3. The χT versus T plots obtained revealed the presence of
ferromagnetic interactions in both cases, with weak coupling through the phenyl ethynyl coupler (7 K for
1, 0.7 K for 3), and larger magnetic exchange between two radicals through the m-phenylene part (23 K
for 1, 6.5 K for 3).
In conclusion, three new triradicals based on phenyl ethynyl backbone bearing nitronyl-nitroxide and
imino-nitroxide groups were prepared and structurally characterised in the solid state. ESR studies revea-
led the presence of magnetic interactions between the radical moieties in dilute solution, demonstrating
the ferromagnetic coupling efficiency of this phenyl ethynyl spacer. Magneto-structural correlations as
well as detailed ESR study of the intramolecular coupling processes in frozen solutions will be reported
elsewhere.
Acknowledgements
We thank CNRS and COST D4 for the financial support. Thanks to R. Poinsot for the SQUID
measurements.
References
1. Rajca, A. Chem. Rev. 1994, 94, 871–893; Molecular Magnetism: From Molecular Assemblies to the Devices; Coronado, E.;
Delhaès, P.; Gatteschi, D.; Miller, J. S. NATO ASI Series, Kluwer Academic Publishers, Dordrecht, 1996, 321; Magnetic
Properties of Organic Materials; Lahti, P. M., Ed.; Marcel Dekker: New York, 1999.
2. Longuet-Higgins, H. C. J. Chem. Phys. 1950, 18, 265–274; Borden, W. T.; Davidson, E. R. J. Am. Chem. Soc. 1977, 99,
4587–4594; Ovchinnikov, A. A. Theor. Chim. Acta 1978, 47, 297–304.
3. Sasaki, S.; Iwamura, H. Chem. Lett. 1992, 1759–1762; Yoshioka, N.; Lahti, P. M.; Kaneko, T.; Kuzumaki, E.; Nishide, H. J.
Org. Chem. 1994, 59, 4272–4276; Nishide, H.; Kaneko, T.; Nii, T.; Katoh, K.; Tsuchida, E.; Lahti, P. M. J. Am. Chem. Soc.
1996, 118, 9695–9704; Nishide, H.; Hozumi, Y.; Nii, T.; Tsuchida, E. Macromolecules 1997, 30, 3986–3991.
4. Wautelet, P.; Bieber, A.; Turek, P.; Le Moigne, J.; André, J.-J. Mol. Cryst. Liq. Cryst. 1997, 305, 55–67; Wautelet, P. Doctor
Thesis of the University Louis Pasteur; Strasbourg, France, 1996.
5. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 50, 4467–4470; Cassar, L. J. Organomet. Chem. 1975, 93,
253–257.
6. Wytko, J. A.; Weiss, J. Tetrahedron Lett. 1991, 32, 7261–7264.
7. Netzke, K.; Snatzke, G. Chem. Ber. 1989, 122, 1365–1370.
8. Sayre, R. J. Am. Chem. Soc. 1955, 77, 6689–6690; Lamchen, M.; Mittag, T. W. J. Chem. Soc. 1966, 2300–2303.
9. Romero, F.; Ziessel, R.; De Cian, A.; Fischer, J.; Turek, P. New J. Chem. 1996, 20, 919–924; Romero, F.; Ziessel, R.
Tetrahedron Lett. 1999, 40, 1895–1898.
10. Ulrich, G.; Ziessel, R. Tetrahedron Lett. 1994, 35, 1215–1218.
11. Selected data for 1: UV–vis (CH2Cl2) λmax, nm (ε, M−1.cm−1), 592 (1130); IR, cm−1 (KBr) 1363 (νN–O); anal. calcd for
C35H43N6O6·CH2Cl2: C, 59.34; H; 6.22; N; 11.53; found: C, 59.11; H, 6.20; N, 11.28; FAB+ m/z 645 [M+H]+; compound
2: UV–vis 595 (700), 450 (712); IR: 1365 (νN–O), 1549 (νC_N); anal. calcd for C35H43N6O5·CH2Cl2: C, 60.67; H; 6.36;
N; 11.79; found: C, 60.55; H, 6.39; N, 11.65; FAB+ m/z 629 [M+H]+; compound 3: UV–vis 602 (560), 445 (1380),
IR 1363 (νN–O), 1544 (νC_N); anal. calcd for C35H43N6O4·CH2Cl2: C, 62.06; H; 6.51; N; 12.06; O, 9.18; found: C,
62.14; H, 6.52; N, 11.99; O, 9.30; FAB+ m/z 613 [M+H]+; X-ray data for 1: C35H43N6O6.CH2Cl2, monoclinic, P21/n,
a=12.254(1), b=18.293(2), c=16.892(2), β=93.877(7), Z=4, R=0.061, Rw=0.083; 3: C35H43N6O4.CH2Cl2, monoclinic,
P21/n, a=12.414(2), b=18.2021(9), c=16.643(1), β=93.712(8), Z=4, R=0.084, Rw=0.094. Atomic coordinates, bond lengths,
angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.