Journal of the American Chemical Society
Article
Bruijn, R.; Vekemans, J. A. J. M.; Palmans, A. R. A; Meijer, E. W.
docking experiments, especially in the case of inverted
enantioselectivity. A reasonable model resulted from these
efforts. On the practical side, the enantioselective mutants
essentially retained the thermostability of WT CALB. Thus, the
range of CALB applications has been expanded considerably.
Macromolecules 2006, 39, 5021−5027.
́
(4) (a) Alatorre-Santamaría, S.; Gotor-Fernandez, V.; Gotor, V. Eur.
J. Org. Chem. 2011, 6, 1057−1063. (b) Patterson, L. D.; Miller, M. J. J.
Org. Chem. 2010, 75, 1289−1292. (c) Santaniello, E.; Casati, S.;
Ciuffreda, P. Curr. Org. Chem. 2006, 10, 1095−1123.
(5) (a) Pam
(b) Pam
(c) Edin, M.; Steinreiber, J.; Backvall, J.-E. Proc. Natl. Acad. Sci. U.S.A.
̀
ies, O.; Backvall, J.-E. Chem. Rev. 2003, 103, 3247−3261.
̈
ASSOCIATED CONTENT
* Supporting Information
■
̀
ies, O.; Backvall, J.-E. Trends Biotechnol. 2004, 22, 130−135.
̈
S
̈
2004, 101, 5761−5766. (d) Deska, J.; Ochoa, C. D.; Backvall, J.-E.
̈
Experimental details including library generation, expression
and screening of libraries, enzyme purification and kinetic
measurements, kinetic resolution of substrates rac-1−14,
protocol for upscaling the model reaction using substrate rac-
1, determination of thermostability, and molecular modeling
and MD simulation; all details and data of the hydrolytic kinetic
resolution of rac-4−14 catalyzed by WT CALB and a series of
mutants; kinetic data of WT CALB and mutant-catalyzed
hydrolysis of racemic substrates 5, 7, 8, 10, 12; primers used in
this work; chiral GC separation conditions; SDS-PAGE of pure
WT CALB, RG 401, and SG 303; equilibrated conformer of
WT CALB after MD simulation; optimized poses of substrate
(R)-1 and of (S)-1 in R-selective mutant RG401. This material
Chem.Eur. J. 2010, 16, 4447−4451.
(6) (a) Kim, M.-J.; Kim, H. M.; Kim, D.; Ahn, Y.; Park, J. Green
Chem. 2004, 6, 471−474. (b) Kim, M.-J.; Kim, W.-H.; Han, K.; Choi,
Y. K.; Park, J. Org. Lett. 2007, 9, 1157−1159. (c) Ko, S.-B.; Baburaj, B.;
Kim, M.-J.; Park, J. J. Org. Chem. 2007, 72, 6860−6864.
(7) Promiscuous reactions catalyzed by CALB: (a) Branneby, C.;
Carlqvist, P.; Hult, K.; Brinck, T.; Berglund, P. J. Mol. Catal. B: Enzym.
2004, 31, 123−128. (b) Branneby, C.; Carlqvist, P.; Magnusson, A.;
Hult, K.; Brinck, T.; Berglund, P. J. Am. Chem. Soc. 2003, 125, 874−
875. (c) Carlqvist, P.; Svedendahl, M.; Branneby, C.; Hult, K.; Brinck,
T.; Berglund, P. ChemBioChem 2005, 6, 331−336. (d) Svedendahl, M.;
Hult, K.; Berglund, P. J. Am. Chem. Soc. 2005, 127, 17988−17989.
(e) Carlqvist, P.; Eklund, R.; Hult, K.; Brinck, T. J. Mol. Model. 2003,
9, 164−171. (f) Carboni-Oerlemans, C.; Domínguez de María, P.;
Tuin, B.; Bargeman, G.; van der Meer, A.; van Gemert, R. J. Biotechnol.
2006, 126, 140−151. (g) Rustoy, E. M.; Sato, Y.; Nonami, H.; Erra-
Balsells, R.; Baldessari, A. Polymer 2007, 48, 1517−1525. (h) Sharma,
U. K.; Sharma, N.; Kumar, R.; Kumar, R.; Sinha, A. K. Org. Lett. 2009,
11, 4846−4848. (i) Wu, Q.; Liu, B.-K.; Lin, X.-F. Curr. Org. Chem.
2010, 14, 1966−1988.
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
(8) (a) Uppenberg, J.; Hansen, M. T.; Patkar, S.; Jones, T. A.
Structure 1994, 2, 293−308. (b) Uppenberg, J.; Oehrner, N.; Norin,
M.; Hult, K.; Kleywegt, G. J.; Patkar, S.; Waagen, V.; Anthonsen, T.;
Jones, T. A. Biochemistry 1995, 34, 16838−16851. (c) Otto, R. T.;
Scheib, H.; Bornscheuer, U. T.; Pleiss, J.; Syldatk, C.; Schmid, R. D. J.
Mol. Catal. B: Enzym. 2000, 8, 201−211.
This manuscript was written through contributions of all
authors.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(9) Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.; Cuccia,
L. A. J. Org. Chem. 1991, 56, 2656−2665.
■
We thank M. Hermes for the synthesis of all chiral p-
nitrophenyl esters (1−14) and H. Hinrichs for high-perform-
ance liquid chromatography analyses. Q.W. acknowledges the
visiting scholarship from “Future Academic Stars” project of
Zhejiang University and China Scholarship Council. This work
was financed by the Max-Planck-Society.
(10) Kirk, O.; Bjorkling, F.; Godtfredsen, S.; Ostenfeld Larsen, T.
̈
Biocatal. Biotransform. 1992, 6, 127−134.
(11) (a) Arroyo, M.; Sinisterra, J. V. J. Org. Chem. 1994, 59, 4410−
4417. (b) Hollmann, F.; Grzebyk, P.; Heinrichs, V.; Doderer, K.;
Thum, O. J. Mol. Catal. B: Enzym. 2009, 57, 257−261. (c) Klomp, D.;
Peters, J. A.; Hanefeld, U. Tetrahedron: Asymmetry 2005, 16, 3892−
3896. (d) Ong, A. L.; Kamaruddin, A. H.; Bhatia, S.; Aboul-Enein, H.
Y. J. Sep. Sci. 2008, 31, 2476−2485. (e) Wang, P.-Y.; Chen, Y.-J.; Wu,
A.-C.; Lin, Y.-S.; Kao, M.-F.; Chen, J.-R.; Ciou, J.-F.; Tsai, S.-W. Adv.
Synth. Catal. 2009, 351, 2333−2341. (f) Morrone, R.; D’Antona, N.;
Lambusta, D.; Nicolosi, G. J. Mol. Catal. B: Enzym. 2010, 65, 49−51.
(g) Juhl, P. B.; Doderer, K.; Hollmann, F.; Thum, O.; Pleiss, J. J.
Biotechnol. 2010, 150, 474−480.
REFERENCES
■
(1) Reviews of lipases in the production of fine chemicals:
(a) Schmid, R. D.; Verger, R. Angew. Chem., Int. Ed. 1998, 37,
1608−1633. (b) Jaeger, K.-E.; Dijkstra, B. W.; Reetz, M. T. Annu. Rev.
Microbiol. 1999, 53, 315−351. (c) Bornscheuer, U. T.; Kazlauskas, R. J.
Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransfor-
mations; Wiley-VCH: Weinheim, Germany, 1999. (d) Naik, S.; Basu,
A.; Saikia, R.; Madan, B.; Paul, P.; Chaterjee, R.; Brask, J.; Svendsen, A.
J. Mol. Catal. B: Enzym. 2010, 65, 18−23. (e) Sharma, D.; Sharma, B.;
Shukla, A. K. Biotechnology 2011, 10, 23−40. (f) Baldessari, A. Methods
Mol. Biol. 2012, 861, 445−456. (g) Andualema, B.; Gessesse, A.
Biotechnology 2012, 11, 100−118. (h) Houde, A.; Kademi, A.; Leblanc,
D. Appl. Biochem. Biotechnol. 2004, 118, 155−170. (i) Song, X.; Qi, X.;
Hao, B.; Qu, Y. Eur. J. Lipid Sci. Technol. 2008, 110, 1095−1101.
(12) (a) Evans, A. M. Eur. J. Clin. Pharmacol. 1992, 42, 237−256.
(b) Davies, N. M. Clin. Pharmacokinet. 1998, 34, 101−154.
(13) (a) Shiina, I.; Nakata, K.; Ono, K.; Onda, Y.; Itagaki, M. J. Am.
Chem. Soc. 2010, 132, 11629−11641. (b) Yang, X.; Birman, V. B.
Chem.Eur. J. 2011, 17, 11296−11304.
(14) (a) Patkar, S.; Vind, J.; Kelstrup, E.; Christensen, M. W.;
Svendsen, A.; Borch, K.; Kirk, O. Chem. Phys. Lipids 1998, 93, 95−101.
(b) Zhang, N. Y.; Suen, W.-C.; Windsor, W.; Xiao, L.; Madison, V.;
Zaks, A. Protein Eng., Des. Sel. 2003, 16, 599−605. (c) Patkar, S.;
Svendsen, A.; Kirk, O.; Clausen, I. G.; Borch, K. J. Mol. Catal. B:
Enzym. 1997, 3, 51−54. (d) Chodorge, M.; Fourage, L.; Ullmann, C.;
(j) Paravidino, M.; Groger, H.; Hanefeld, U. In Enzyme Catalysis in
̈
Organic Synthesis; Drauz, K., Groger, H., May, O., Eds.; Wiley-VCH:
̈
Weinheim, Germany, 2012; pp 251−362.
(2) Kirk, O.; Christensen, M. W. Org. Prog. Res. Dev. 2002, 6, 446−
451.
Duvivier, V.; Masson, J.-M.; Lefev
1022−1026. (e) Costa, L.; Brissos, V.; Lemos, F.; Ramo
̀
re, F. Adv. Synth. Catal. 2005, 347,
a Ribeiro, F.;
̂
Cabral, J. M. S. Bioprocess Biosyst. Eng. 2009, 32, 53−61. (f) Suen, W.-
C.; Zhang, N.; Xiao, L.; Madison, V.; Zaks, A. Protein Eng., Des. Sel.
2004, 17, 133−140.
(3) Examples of CALB-catalyzed polymerization: (a) Gross, R. A.;
Kumar, A.; Kalra, B. Chem. Rev. 2001, 101, 2097−2124. (b) Kobayashi,
S.; Uyama, H.; Kimura, S. Chem. Rev. 2001, 101, 3793−3818.
(c) Takwa, M.; Wittrup Larsen, M.; Hult, K.; Martinelle, M. Chem.
Commun. 2011, 47, 7392−7394. (d) van der Mee, L.; Helmich, F.; de
(15) (a) Qian, Z.; Fields, C. J.; Lutz, S. ChemBioChem 2007, 8,
1989−1996. (b) Qian, Z.; Horton, J. R.; Cheng, X. D.; Lutz, S. J. Mol.
1880
dx.doi.org/10.1021/ja310455t | J. Am. Chem. Soc. 2013, 135, 1872−1881