B. Botta et al.
FULL PAPER
2
CH2Br), 3.29 (t, 2 H, J
7.5 Hz, CH2Br), 2.81 (t, 2 H, J
7.5 Hz, 2-CH2), 2.42 (m, 4 H, 8-
cation was most probably located between two resorcinar-
ene molecules.
8 Hz, CH2Br), 2.48 (q, 2 H, J
CH2, 20-CH2), 1.65 (q, 2 H, J 8 Hz, 14-CH2). – 13C NMR: δ
155.96 (s, C-10, C-18), 155.86 (s, C-12, C-16), 156.56 (s, C-6, C-
22), 156.51 (s, C-4, C-24), 126.94 (d, C-26, C-27), 126.79 (d, C-25,
C-28), 125.46 (s, C-7, C-21), 124.21 (s, C-13, C-15), 123.63 (s, C-1,
C-3), 122.97 (s, C-9, C-19), 96.92 (d, C-11, C-17), 95.94 (d, C-5, C-
23), 56.47 (q, 4-, 24-OMe), 56.23 (q, 6-, 22-OMe), 55.83 (q, 10-,
18-OMe), 55.79 (q, 12-, 16-OMe), 40.59 (t, 2-CH2), 39.65 (t, 14-
CH2), 37.76 (t, 8-, 20-CH2), 34.60 (d, C-8, C-20), 32.00 (t,
The inclusion of GaCl3 in resorcinarene 10 was con-
firmed by the deep-blue colour of the solutions, associated
with absorption maxima at 560 and 620 nm in the UV/vis
spectrum, and by peaks in the FAB-MS spectrum at m/z
1136 and 1101, attributable to the fragments [M GaCl2]
and [M
GaCl] , respectively. The homologous resor-
cinarenes 9 and 11 produced comparable results.
2
CH2Br), 31.69 (t, CH2Br), 31.59 (t, CH2Br), 31.40 (d, C-2),
31.12 (d, C-14).
Conclusions
Tetraethylresorcinarenes 4a and 4b: A solution of 3a or 3b
(0.16 mmol), Bu3SnH (0.24 mmol), and a catalytic amount of
AIBN in dry benzene (1.5 mL) was refluxed for 3 h under N2. The
solvent was then evaporated and the residue was washed several
The above results have shown that C-alkyl-resorcinarene
octamethyl ethers, synthesized in our laboratories,[1–3] are
capable of interacting with FeCl3 and GaCl3 in organic times with hexane. Purification by column chromatography
(CHCl3/MeOH, 97:3) afforded pure 4a or 4b in quantitative yield.
solvents. Resorcinarenes lacking carboxylic groups in the
side chains (such as 4a and 4b) possess only one active site
located at the upper part of the aromatic moiet. Resorcinar-
enes bearing carboxylic groups, either in a freely rotating
side chain (as in 1a) or in the polymethylene bridge of the
basket compound 10, possess a second interaction site. In
the latter case, on the basis of the different influences on
the chemical shifts in the H-NMR spectrum, the cation
was hypothesized to reside external to the two ‘‘handles’’,
between two molecules of 10.
1
4a (Crown): m.p. 260–262 °C. – H NMR (CDCl3): δ
6.65 (s, 4
H, 25-, 26-, 27-, 28-H), 6.32 (s, 4 H, 5-, 11-, 17-, 23-H), 4.38 (t, 4
H, J 7.5 Hz, 2-, 8-, 14-, 20-H), 3.60 (s, 24 H, 8 OMe), 1.85
(quint, 8 H, J 7 Hz, 4 CH2), 0.92 (t, 8 H, J 7 Hz, Me). –
13C NMR: δ 155.86 (s, C-4, C-6, C-10, C-12, C-16, C-18, C-22,
C-24), 125.99 (d, C-25, C-26, C-27, C-28), 126.08 (s, C-1, C-3, C-
7, C-9, C-13, C-15, C-19, C-21), 96.98 (d, C-5, C-11, C-17, C-23),
56.17 (q, 8 OMe), 27.76 (t, 4 CH2), 36.95 (d, C-2, C-8, C-14,
1
C-20), 12.76 (t, 4 Me). – EI-MS: m/z (%)
712 [M] (29), 683
[M – Et] (100), 327 [M – 2 Et]2 (16).
1
4b (Diamond): m.p. 205–206 °C. – H NMR (CDCl3): δ 7.60 (s,
2 H, 25-, 28-H), 6.46 (s, 2 H, 26-, 27-H), 6.43 (s, 2 H, 5-, 23-H),
6.38 (s, 2 H, 11-, 17-H), 5.01 (t, 1 H, J 8 Hz, 2-H), 4.56 (t, 1 H,
Experimental Section
J
8 Hz, 14-H), 4.53 (dd, 2 H, J 10 and 5.5 Hz, 8-, 20-H), 3.86
(s, 2 H, 4-, 24-OMe), 3.84 (s, 2 H, 6-, 22-OMe), 3.76 (s, 2 H, 10-,
18-OMe), 3.56 (s, 2 H, 12-, 16-OMe), 2.98 (quint, 2 H, J 8 Hz,
2-CH2), 1.86 (m, 4 H, 8-CH2, 20-CH2), 1.03 (quint, 2 H, J 8 Hz,
14-CH2), 0.92 (t, 4 H, J 7.5 Hz, 2 Me), 0.86 (t, 2 H, J
General Remarks: Melting points (uncorrected): Kofler appar-
atus. – 1H- and 13C-NMR spectra (300 MHz and 75 MHz, TMS at
δ
0 as internal standard in CDCl3 solution): Varian Gemini 300
spectrometer. – EI-MS (direct inlet): VG7070 EQ spectrometer. –
UV/vis spectra: Cary 4 spectrophotometer. – Column chromato-
graphy: Merck Kieselgel 60.
7.5 Hz, Me), 0.33 (t, 2 H, J 7.5 Hz, Me). – 13C NMR: δ 156.38
(s, C-6, C-22), 155.92 (s, C-4, C-24), 155.35 (s, C-10, C-18), 155.35
(s, C-12, C-16), 127.01 (d, C-26, C-27), 127.89 (s, C-7, C-21), 126.85
(d, C-25, C-28), 126.14 (s, C-1, C-3), 125.72 (s, C-13, C-15), 124.81
(s, C-9, C-19), 97.04 (d, C-11, C-17), 96.11 (d, C-5, C-23), 56.71 (q,
4-, 24-OMe), 56.48 (q, 6-, 22-OMe), 55.91 (q 2, 10-, 12-, 16-, 18-
OMe), 37.00 (d, C-8, C-20), 33.13 (d, C-14), 32.66 (d, C-2), 30.49
(t, 2-CH2), 29.49 (t, 14-CH2), 27.55 (t, 8-, 20-CH2), 13.03 (t,
Tetrabromoresorcinarenes 3a and 3b:
A solution of PPh3
(12.4 mmol) in CH2Cl2 (8 mL) was added dropwise to a solution
of the calixarene tetraalcohol (2a or 2b,[1] 3.5 mmol) and CBr4
(1.4 mmol) in CH2Cl2 (10 mL). The resulting mixture was stirred
at room temperature for 20 h and then the solvent was evaporated.
Purification of the residue by column chromatography (CH2Cl2)
afforded the tetrabromoresorcinarene 3a or 3b in 58% and 54%
yield, respectively.
2
Me), 12.55 (t, Me), 12.05 (t, Me). – EI-MS: m/z (%)
712
[M] (27), 683 [M – Et] (100), 327 [M – 2 Et]2 (19).
1
3a (Crown): m.p. 263–265 °C. – H NMR (CDCl3): δ
6.52 (br.
3-(2,4-Dimethoxyphenyl)propyl Alcohol (6): The alcohol was pre-
pared by LiAlH4 reduction of the 3-(2,4-dimethoxyphenyl)pro-
panoic acid isopropyl ester (5), which, in turn, was synthesized by
reduction of 2,4-dimethoxycinnamic acid isopropyl ester with H2
in the presence of Pd/C.
s, 4 H, 25-, 26-, 27-, 28-H), 6.31 (s, 4 H, 5-, 11-, 17-, 23-H), 4.63 (t,
4 H, J 7.5 Hz, 2-, 8-, 14-, 20-H), 3.62 (s, 24 H, 8 OMe), 3.37
(t, 8 H, J 7.5 Hz, 4 CH2Br), 2.42 (q, 8 H, J 7.5 Hz,
CH2). – 13C NMR: δ 156.40 (s, C-4, C-6, C-10, C-12, C-16,
4
C-18, C-22, C-24), 125.46 (d, C-25, C-26, C-27, C-28), 124.76 (s,
C-1, C-3, C-7, C-9, C-13, C-15, C-19, C-21), 97.03 (d, C-5, C-11,
C-17, C-23), 56.08 (q, OMe), 38.31 (t, CH2), 34.63 (d, C-2, C-8, C-
14, C-20), 31.45 (t, CH2Br).
1
Isopropyl Ester 5: Oil. – H NMR (CDCl3): δ 7.02 (d, 1 H, J
8 Hz, 6-H), 6.42 (d, 1 H, J 2 Hz, 3-H), 6.38 (dd, 1 H, J 8 and
2 Hz, 5-H), 3.77 (s, 3 H, OMe), 3.75 (s, 3 H, OMe), 3.63 (s, 3 H,
OMe), 2.86 (t, 2 H, J 7.5 Hz, 7-H), 2.56 (t, 2 H, J 7.5 Hz, 8-
1
3b (Diamond): m.p. 214–216 °C. – H NMR (CDCl3): δ 7.37 (s,
H). – 13C NMR: δ
173.59 (s, C O), 159.33 (s, C-4), 158.07 (s,
2 H, 25-, 28-H), 6.46 (s, 2 H, 5-, 23-H), 6.43 (s, 2 H, 26-, 27-H), C-2), 129.07 (d, C-6), 120.87 (s, C-1), 103.50 (d, C-5), 98.17 (d, C-
6.38 (s, 2 H, 11-, 17-H), 5.21 (t, 1 H, J 8 Hz, 2-H), 4.77 (dd, 2 3), 54.98 (q, OMe), 54.89 (q, OMe), 51.16 (q, OMe), 34.02 (t, C-
H, J 7.5 and 6.5 Hz, 8-, 20-H), 4.73 (t, 1 H, J
8 Hz, 14-H), 8), 25.28 (t, C-7). – EI-MS: m/z (%)
224 [M] (67), 164 [M –
HCOOMe] (13), 151 [M – CH2COOMe] (100), 121 [151 –
OCH2] (49), 91 [121 – OCH2] (25).
3.87 (s, 2 H, 4-, 24-OMe), 3.86 (s, 2 H, 6-, 22-OMe), 3.78 (s, 2 H,
10-, 18-OMe), 3.67 (s, 2 H, 12-, 16-OMe), 3.36 (m, 4 H,
846
Eur. J. Org. Chem. 2000, 841 847