2960
J. Am. Chem. Soc. 2000, 122, 2960-2961
Synthesis and Characterization of C- and N-Bound
Isomers of Transition Metal r-Cyanocarbanions
Takeshi Naota,* Akio Tannna, and Shun-Ichi Murahashi*
Department of Chemistry
Graduate School of Engineering Science
Osaka UniVersity, Machikaneyama
Toyonaka, Osaka 560-8531, Japan
ReceiVed December 16, 1999
Transition metal R-cyanocarbanions are the subjects of con-
siderable attention in relation to the enolate chemistry of transition
metals,1 and also as a key intermediate for a family of catalytic
carbon-carbon bond forming reactions of nitriles with electro-
philes under neutral conditions.2,3 According to numerous studies
on the preparation of transition metal R-cyanocarbanions, two
types of structures, C-1,4 and N-bound ones,2b,5,6 are known as
stable forms. The C-bound complexes have been widely used as
R-cyanoalkylating reagents,1 while the N-bound ones, derived by
R-C-H activation of nitriles, have recently proven to be active
species for catalytic aldol and Michael reactions of nitriles.2b,5a
The basic studies on the dynamic behavior of C- and N-bound
complexes, e.g., reactivities toward electrophiles and intercon-
versions, are of particular importance since they will provide
significant information on the design and creation of novel C-C
bond forming process of nitriles via R-C-H activation.2,3
Synthesis of both exact isomers will lead us directly to the
systematic investigations; however, difficulties in obtaining the
isomers have long been preventing such a study.
Figure 1. Molecular structure of 1b. Thermal ellipsoids are shown at
the 30% probability level. Selected bond lengths (Å) and angles (deg):
Ru-P(1), 2.290(3); Ru-P(2), 2.289(3); Ru-C(1), 2.17(1); S-C(1),
1.80(1); C(1)-C(2), 1.45(2); C(2)-N, 1.17(1); S-O(1), 1.429(8);
S-O(2), 1.445(8); P(1)-Ru-P(2), 71.8(1); P(1)-Ru-C(1), 92.0(3);
P(2)-Ru-C(1), 101.7(3); Ru-C(1)-S, 112.4(5); Ru-C(1)-C(2), 113.1(8);
S-C(1)-C(2), 107.7(8).
resonance structure of enolate enables both isomers to be present
in a stable form. In this paper, we describe the first synthesis of
C- and N-bound isomers of transition metal R-cyanocarbanion,
RuCp[CH(CN)SO2Ph](PR3)2 (1) and Ru+Cp(NCCH-SO2Ph)(PR3)2
(2), and the first observation of their specific isomerizations.
The reaction of RuCpCl(PPh3)2 with the sodium salt of
(phenylsulfonyl)acetonitrile in EtOH/toluene (1:1) under argon
atmosphere at 25 °C gave the corresponding N-bound complex,
Ru+Cp(NCCH-SO2Ph)(PPh3)2 (2a), as the sole product in 89%
yield. When a similar reaction was carried out in EtOH/hexane
(1:1), the corresponding C-bound isomer, RuCp[CH(CN)SO2Ph]-
(PPh3)2 (1a), was formed as a 59:41 mixture of 1a and 2a.
Filtration of the precipitate under argon atmosphere gave pure
1a in 37% yield. Various N- and C-bound complexes of tertiary
phosphines can be prepared either by a similar treatment of
RuCpCl(PR3)2 or the ligand exchange of 1a or 2a with phosphines.
As a part of the program aiming at the development of novel
catalytic C-C bond forming reactions of nitriles,2 we are
investigating the structure and reactivity of transition metal
R-cyanocarbanion intermediates. We have designed a model
system for ruthenium phosphine complexes of R-cyanocarbanion
bearing an R-sulfonyl group, whose small contribution to the
1
These complexes are characterized by H, 13C NMR, IR, mass
spectra, and elemental analyses.
The almost complete R-metalated and zwitter ionic structures
of the C- and N-bound complexes have been unequivocally
established by X-ray analysis. Figure 1 shows the molecular
structure of RuCp[CH(CN)SO2Ph](dppm) (1b, dppm ) Ph2PCH2-
PPh2).7 The Ru-C(1) bond distance (2.12 Å) lies in the range of
a normal metal-carbon single bond of MCH2CN (2.1-2.2 Å).4d,f,g
The bond angles around the C(1) atom indicate sp3 configuration
of C(1). The C(2)-N bond distance (1.18 Å) is within the normal
range of the CN triple bond of free nitrile, and the C(1)-C(2)-N
bond angle is almost linear (178°). These observations show the
carbon-metal bond of 1b has complete σ-character and any
contribution to η2-coordination is negligible. The molecular
structure of N-bound complex 2a is illustrated in Figure 2.7 The
(1) (a) Stack, J. G.; Doney, J. J.; Bergman, R. G.; Heathcock, C. H.
Organometallics 1990, 9, 453. (b) Knochel, P.; Jeong, N.; Rozema, M. J.;
Yeh, M. C. P. J. Am. Chem. Soc. 1989, 111, 6474. (c) Liu, H.-J.; Al-said, N.
H. Tetrahedron Lett. 1991, 32, 5473. (d) Kauffmann, T.; Kieper, H.; Pieper,
H. Chem. Ber. 1992, 125, 899. (e) Reetz, M. T.; Haning, H.; Stanchev, S.
Tetrahedron Lett. 1992, 33, 6963.
(2) (a) Naota, T.; Taki, H.; Mizuno, M.; Murahashi, S.-I. J. Am. Chem.
Soc. 1989, 111, 5954. (b) Murahashi, S.-I.; Naota, T.; Taki, H.; Mizuno, M.;
Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.;
Fukuoka, A. J. Am. Chem. Soc. 1995, 117, 12436. (c) Takaya, H.; Naota, T.;
Murahashi, S.-I. J. Am. Chem. Soc. 1998, 120, 4244.
(3) (a) Yamamoto, Y.; Al-Masum, M.; Asao, N. J. Am. Chem. Soc. 1994,
116, 6019. (b) Trost, B. M.; Michellys, P.-Y.; Gerusz, V. J. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 1750. (c) Tsukada, N.; Yamamoto, Y. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2477. (d) Paganelli, S.; Schionato, A.; Botteghi, C.
Tetrahedron Lett. 1991, 32, 2807. (e) Sawamura, M.; Hamashima, H.; Ito, Y.
J. Am. Chem. Soc. 1992, 114, 8295. (f) Sawamura, M.; Sudoh, M.; Ito, Y. J.
Am. Chem. Soc. 1996, 118, 3309. (g) Hirano, M.; Ito, Y.; Hirai, M.; Fukuoka,
A.; Komiya, S. Chem. Lett. 1993, 2057.
(4) (a) English, A. D.; Herskovitz, T. J. Am. Chem. Soc. 1977, 99, 1648.
(b) Ittel, S. D.; Tolman, C. A.; English, A. D.; Jesson, J. P. J. Am. Chem.
Soc. 1978, 100, 7577. (c) Halpern, J.; Wong, L.-Y. J. Am. Chem. Soc. 1968,
90, 6665. (d) Cowan, R. L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111,
4750. (e) Siegl, W. O.; Collman, J. P. J. Am. Chem. Soc. 1972, 94, 2516. (f)
Porta, F.; Ragaini, F.; Cenini, S. Organometallics 1990, 9, 929. (g) Ragaini,
F.; Porta, F.; Fumagalli, A.; Demartin, F. Organometallics 1991, 10, 3785.
(h) Cummins, D.; Higson, B. M.; McKenzie, E. D. J. Chem. Soc., Dalton
1973, 414. (i) Arnold, D. P.; Bennett, M. A. J. Organomet. Chem. 1980, 199,
119. (j) Vicente, J.; Chicote, M.-T.; Saura-Llamas, I.; Lagunas, M.-C. J. Chem.
Soc., Chem. Commun. 1992, 915. (k) Komiya, S.; Iwata, M.; Sone, T.;
Fukuoka, A. J. Chem. Soc., Chem. Commun. 1992, 1109.
(5) (a) Mizuho, Y.; Kasuga, N.; Komiya, S. Chem. Lett. 1991, 2127. (b)
Ricci, J. S.; Ibers, J. A. J. Am. Chem. Soc. 1971, 93, 2391. (c) Schlodder, R.;
Ibers, J. A. Inorg. Chem. 1974, 13, 2870. (d) Sacher, W.; Nagel, U.; Beck,
W. Chem. Ber. 1987, 120, 895. (e) Zhao, H.; Heintz, R. A.; Dunbar, K. R. J.
Am. Chem. Soc. 1996, 118, 12844. (f) Ja¨ger, L.; Tretner, C.; Hartung, H.;
Biedermann, M. Chem. Ber. 1997, 130, 1007. (g) Yates, M. L.; Arif, A. M.;
Manson, J. L.; Kalm, B. A.; Burkhart, B. M.; Miller, J. S. Inorg. Chem. 1998,
37, 840. (h) Triki, S.; Pala, J. S.; Decoster, M.; Molinie´, P.; Toupet, L. Angew.
Chem., Int. Ed. Engl. 1999, 38, 113. (i) Reference 3g. (j) Reference 4i.
(6) Linear zwitter ion (M+-NC-C-R1R2) and bent azaallene (M-NdCd
CR1R2) structures have been an argument for the N-bound complex of transition
metals; however, the reported X-ray analyses indicate a strong contribution
of zwitter ionic structure.2b,5a-h
(7) Crystallographic data. 1b: orthorhombic, Pbca, a ) 42.400(1) Å, b )
19.648(7) Å, c ) 17.943(8) Å, V ) 14947(8) Å3, Z ) 16, R ) 0.055, Rw
)
0.069, GOF ) 1.74. 2a: monoclinic, P21/n, a ) 10.298(2) Å, b ) 22.889(4)
Å, c ) 17.333(1) Å, â ) 95.06(1)°, V ) 4069.5(10) Å3, Z ) 4, R ) 0.038,
Rw ) 0.039, GOF ) 1.33.
10.1021/ja994387l CCC: $19.00 © 2000 American Chemical Society
Published on Web 03/10/2000