ORGANIC
LETTERS
2000
Vol. 2, No. 7
957-960
Synthesis of the C16−C28 Spiroketal
Subunit of Spongistatin 1
(Altohyrtin A): The Pyrone Approach
Michael T. Crimmins* and Jason D. Katz
Venable and Kenan Laboratories of Chemistry, UniVersity of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290
Received February 1, 2000
ABSTRACT
The synthesis of the CD spiroketal fragment of spongistatin 1 (altohyrtin A) has been accomplished utilizing the addition of a metalated
pyrone to an aldehyde and subsequent acid-catalyzed spirocyclization. A stereoselective hydrogenation and subsequent conformational inversion
establish the C19 stereocenter and the axial−equatorial spiroketal center.
The spongistatins,1 altohyrtins,2 and cinachyrolide A3 are
recently isolated members of a new class of antitumor
agents.4 We recently reported the preparation of the C1-
C13 spiroketal (AB) subunit of the potent antitumor agent
spongistatin 15 (altohyrtin A) 1. Several other approaches
to the AB spiroketal,6 CD spiroketal,6a,e,g,7 and EF fragments8
have been reported, and recently the first total syntheses of
altohyrtins A9 and C10 were described.
To date, most approaches to the CD spiroketal have relied
on the thermodynamic equilibration of the anomeric center
to control the spiroketal configuration. Since the CD
spiroketal of spongistatin is an equatorial-axial spiroketal,
thermodynamic control results in a mixture of the diaxial
and equatorial-axial spiroketals in approximately equal
ratios, depending on the reaction conditions. One exception
is the apparent kinetic formation of a 6.5:1 ratio in favor of
the axial-equatorial spiroketal observed by Heathcock.6a
(1) (a) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. L.; Boyd, M.
R.; Schmidt, J. M.; Hooper, J. N. A. J. Org. Chem. 1993, 58, 1302-1304.
(b) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. L.; Boyd, M. R.;
Schmidt, J. M.; Hamel, E.; Bai, R. J. Chem. Soc., Chem. Commun. 1994,
58, 1605-1606. (c) Pettit, G. R.; Herald, C.L.; Cichacz, Z. A.; Gao, F.;
Schmidt, J. M.; Boyd, M. R.; Christie, N. D.; Boettner, F. E. J. Chem.
Soc., Chem. Commun. 1993, 1805-1807. (d) Pettit, G. R.; Herald, C.L.;
Cichacz, Z. A.; Gao, F.; Schmidt, J. M.; Boyd, M. R.; Christie, N. D.;
Boettner, F. E. J. Chem. Soc., Chem. Commun. 1993, 1166-1168.
(2) Kobayashi, M.; Aoki, S.; Gato, K.; Kitagawa, I. Chem. Pharm. Bull.
1996, 44, 2142-22149 and references therein.
(6) (a) Heathcock, C. H.; Claffey, M. M. J. Org. Chem. 1996, 61, 7646.
(b) Claffey, M. M.; Hayes, C. J.; Heathcock, C. H. J. Org. Chem. 1999,
64, 8267-8274. (c) Paterson, I.; Oballa, R. M.; Norcross, R. D. Tetrahedron
Lett. 1996, 37, 8581-8584. (d) Paterson, I.; Oballa, R. M. Tetrahedron
Lett. 1997, 38, 8241. (e) Paterson, I.; Wallace, D. J.; Oballa, R. M.
Tetrahedron Lett. 1998, 39, 8545. (f) Paquette, L. A.; Zuev, D. Tetrahedron
Lett. 1997, 38, 5115-5118. (g) Paquette, L. A.; Zuev, D. Org. Lett. 2000,
2, 679-682. (h) Smith, A. B., III; Lin, Q.; Nakayama, K.; Boldi, A.; Brook,
C. S.; McBriar, M. D.; Moser, W. H.; Sobukawa, M.; Zhuang, L.
Tetrahedron Lett. 1997, 38, 8675-8678. (i) Zemribo, R.; Mead K. T.
Tetrahedron Lett. 1998, 39, 3891. (j) Zemribo, R.; Mead, K. T. Tetrahedron
Lett. 1998, 39, 3895. (k) Terauchi, T.; Nakata, M. Tetrahedron Lett. 1998,
39, 3795.
(3) Fusetani, N.; Shinoda, K.; Matsunoga, S. J. Am. Chem. Soc. 1993,
115, 3977-3981.
(4) (a) Bai, R.; Cichacz, Z. A.; Herald, C. L.; Pettit, G. R.; Hamel, E.
Mol. Pharmacol. 1993, 44, 757-766. (b) Bai, R.; Taylor, G. F.; Cichacz,
Z. A.; Herald, C. L.; Kepler, J. A.; Pettit, G. R.; Hamel, E. Biochemistry
1995, 34, 9714-9721.
(5) Crimmins, M. T.; Washburn, D. G. Tetrahedron Lett. 1998, 39,
7487-7490.
10.1021/ol005605e CCC: $19.00 © 2000 American Chemical Society
Published on Web 03/07/2000